Riesz conjugate functions theorem for harmonic quasiconformal mappings

被引:2
作者
Liu, Jinsong [1 ,2 ]
Zhu, Jian-Feng [3 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, HLM, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
[3] Huaqiao Univ, Sch Math Sci, Quanzhou 362021, Peoples R China
基金
国家重点研发计划;
关键词
Bergman space; Hardy space; Harmonic mappings; Quasiconformal mappings; Riesz conjugate functions theorem; HP; HARDY;
D O I
10.1016/j.aim.2023.109321
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We generalize the Riesz conjugate functions theorem for planar harmonic K-quasiregular mappings (when 1 < p <= 2) and harmonic K-quasiconformal mappings (when 2 < p < infinity) in the unit disk. Moreover, if K = 1, then our constant coincides with the classical analytic case. For the n dimensional case (n > 2), we also obtain the Riesz conjugate functions theorem for invariant harmonic K-quasiregular mappings when 1 < p <= 2. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:27
相关论文
共 26 条
  • [1] ASTALA K, 1985, MICH MATH J, V32, P99
  • [2] Astala K, 2011, PURE APPL MATH Q, V7, P19
  • [3] MAXIMAL FUNCTION CHARACTERIZATION OF CLASS HP
    BURKHOLDER, DL
    GUNDY, RF
    SILVERSTEIN, ML
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 157 (JUN) : 137 - +
  • [4] Duren P., 2004, Cambridge Tracts in Mathematics, V156
  • [5] Duren Peter L., 1970, PURE APPL MATH, V38
  • [6] Fefferman C, 1972, ACTA MATH-DJURSHOLM, V129, P137, DOI 10.1007/BF02392215
  • [7] ANALYSIS AND APPLICATIONS: THE MATHEMATICAL WORK OF ELIAS STEIN
    Fefferman, Charles
    Ionescu, Alex
    Tao, Terence
    Wainger, Stephen
    Magyar, Akos
    Mirek, Mariusz
    Nagel, Alexander
    Phong, D. H.
    Pierce, Lillian
    Ricci, Fulvio
    Sogge, Christopher
    Street, Brian
    Lanzani, Loredana
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 57 (04) : 523 - 594
  • [8] Gilbarg D., 1983, ELLIPTIC PARTIAL DIF
  • [9] Hedenmalm H., 2000, THEORY BERGMAN SPACE, DOI DOI 10.1007/978-1-4612-0497-8
  • [10] HENGARTNER W, 1986, J LOND MATH SOC, V33, P473