Riesz conjugate functions theorem for harmonic quasiconformal mappings

被引:4
作者
Liu, Jinsong [1 ,2 ]
Zhu, Jian-Feng [3 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, HLM, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
[3] Huaqiao Univ, Sch Math Sci, Quanzhou 362021, Peoples R China
基金
国家重点研发计划;
关键词
Bergman space; Hardy space; Harmonic mappings; Quasiconformal mappings; Riesz conjugate functions theorem; HP; HARDY;
D O I
10.1016/j.aim.2023.109321
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We generalize the Riesz conjugate functions theorem for planar harmonic K-quasiregular mappings (when 1 < p <= 2) and harmonic K-quasiconformal mappings (when 2 < p < infinity) in the unit disk. Moreover, if K = 1, then our constant coincides with the classical analytic case. For the n dimensional case (n > 2), we also obtain the Riesz conjugate functions theorem for invariant harmonic K-quasiregular mappings when 1 < p <= 2. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:27
相关论文
共 26 条
[1]  
ASTALA K, 1985, MICH MATH J, V32, P99
[2]  
Astala K, 2011, PURE APPL MATH Q, V7, P19
[3]   MAXIMAL FUNCTION CHARACTERIZATION OF CLASS HP [J].
BURKHOLDER, DL ;
GUNDY, RF ;
SILVERSTEIN, ML .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 157 (JUN) :137-+
[4]  
DUREN P., 2004, HARMONIC MAPPINGS PL
[5]  
Duren P.L., 1970, Theory of Hp Spaces
[6]  
FEFFERMAN C, 1972, ACTA MATH-UPPSALA, V129, P137, DOI 10.1007/BF02392215
[7]   ANALYSIS AND APPLICATIONS: THE MATHEMATICAL WORK OF ELIAS STEIN [J].
Fefferman, Charles ;
Ionescu, Alex ;
Tao, Terence ;
Wainger, Stephen ;
Magyar, Akos ;
Mirek, Mariusz ;
Nagel, Alexander ;
Phong, D. H. ;
Pierce, Lillian ;
Ricci, Fulvio ;
Sogge, Christopher ;
Street, Brian ;
Lanzani, Loredana .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 57 (04) :523-594
[8]  
Gilbarg D., 1977, Elliptic partial differential equations of second order, V224
[9]  
Hedenmalm H, 2000, Theory of Bergman Spaces, DOI DOI 10.1007/978-1-4612-0497-8
[10]  
HENGARTNER W, 1986, J LOND MATH SOC, V33, P473