Quisinostat is a brain-penetrant radiosensitizer in glioblastoma

被引:8
作者
Lo Cascio, Costanza [1 ,2 ]
Margaryan, Tigran [1 ,2 ]
Luna-Melendez, Ernesto [1 ,2 ]
McNamara, James B. [1 ,2 ]
White, Connor I. [1 ,2 ]
Knight, William [1 ,2 ]
Ganta, Saisrinidhi [1 ,2 ]
Opachich, Zorana [1 ,2 ]
Cantoni, Claudia [2 ]
Yoo, Wonsuk [1 ,2 ]
Sanai, Nader [1 ,2 ]
Tovmasyan, Artak [1 ,2 ]
Mehta, Shwetal [1 ,2 ,3 ]
机构
[1] St Josephs Hosp, Barrow Neurol Inst, Ivy Brain Tumor Ctr, Phoenix, AZ 85013 USA
[2] St Josephs Hosp, Barrow Neurol Inst, Dept Translat Neurosci, Phoenix, AZ 85013 USA
[3] St Josephs Hosp, Barrow Neurol Inst, 350 W Thomas Rd, Phoenix, AZ 85013 USA
关键词
HISTONE DEACETYLASE INHIBITOR; DNA-DAMAGE RESPONSE; HUMAN GLIOMA-CELLS; HDAC INHIBITORS; TRANSFORMED-CELLS; IN-VIVO; EFFICACY; TRICHOSTATIN; TEMOZOLOMIDE; MECHANISMS;
D O I
10.1172/jci.insight.167081
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Histone deacetylase (HDAC) inhibitors have garnered considerable interest for the treatment of adult and pediatric malignant brain tumors. However, owing to their broad-spectrum nature and inability to effectively penetrate the blood-brain barrier, HDAC inhibitors have failed to provide substantial clinical benefit to patients with glioblastoma (GBM) to date. Moreover, global inhibition of HDACs results in widespread toxicity, highlighting the need for selective isoform targeting. Although no isoform-specific HDAC inhibitors are currently available, the second-generation hydroxamic acid-based HDAC inhibitor quisinostat possesses subnanomolar specificity for class I HDAC isoforms, particularly HDAC1 and-2. It has been shown that HDAC1 is the essential HDAC in GBM. This study analyzed the neuropharmacokinetic, pharmacodynamic, and radiation -sensitizing properties of quisinostat in preclinical models of GBM. It was found that quisinostat is a well-tolerated and brain-penetrant molecule that extended survival when administered in combination with radiation in vivo. The pharmacokinetic-pharmacodynamic-efficacy relationship was established by correlating free drug concentrations and evidence of target modulation in the brain with survival benefit. Together, these data provide a strong rationale for clinical development of quisinostat as a radiosensitizer for the treatment of GBM.
引用
收藏
页数:23
相关论文
共 84 条
[1]   Re-programing Chromatin with a Bifunctional LSD1/HDAC Inhibitor Induces Therapeutic Differentiation in DIPG [J].
Anastas, Jamie N. ;
Zee, Barry M. ;
Kalin, Jay H. ;
Kim, Mirhee ;
Guo, Robyn ;
Alexandrescu, Sanda ;
Blanco, Mario Andres ;
Giera, Stefanie ;
Gillespie, Shawn M. ;
Das, Jayanta ;
Wu, Muzhou ;
Nocco, Sarah ;
Bonal, Dennis M. ;
Quang-De Nguyen ;
Suva, Mario L. ;
Bernstein, Bradley E. ;
Alani, Rhoda ;
Golub, Todd R. ;
Cole, Philip A. ;
Filbin, Mariella G. ;
Shi, Yang .
CANCER CELL, 2019, 36 (05) :528-+
[2]   JNJ-26481585, a Novel "Second-Generation" Oral Histone Deacetylase Inhibitor, Shows Broad-Spectrum Preclinical Antitumoral Activity [J].
Arts, Janine ;
King, Peter ;
Marien, Ann ;
Floren, Wim ;
Belien, Ann ;
Janssen, Lut ;
Pilatte, Isabelle ;
Roux, Bruno ;
Decrane, Laurence ;
Gilissen, Ron ;
Hickson, Ian ;
Vreys, Veronique ;
Cox, Eugene ;
Bol, Kees ;
Talloen, Willem ;
Goris, Ilse ;
Andries, Luc ;
Du Jardin, Marc ;
Janicot, Michel ;
Page, Martin ;
van Emelen, Kristof ;
Angibaud, Patrick .
CLINICAL CANCER RESEARCH, 2009, 15 (22) :6841-6851
[3]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[4]   DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation [J].
Bakkenist, CJ ;
Kastan, MB .
NATURE, 2003, 421 (6922) :499-506
[5]   Chemosensitization of glioblastoma cells by the histone deacetylase inhibitor MS275 [J].
Bangert, Annette ;
Haecker, Sabine ;
Cristofanon, Silvia ;
Debatin, Klaus-Michael ;
Fulda, Simone .
ANTI-CANCER DRUGS, 2011, 22 (06) :494-499
[6]   Histone deacetylase inhibitors in glioblastoma: pre-clinical and clinical experience [J].
Bezecny, Pavel .
MEDICAL ONCOLOGY, 2014, 31 (06)
[7]   Mammalian single-strand break repair: Mechanisms and links with chromatin [J].
Caldecott, Keith W. .
DNA REPAIR, 2007, 6 (04) :443-453
[8]   Enhanced radiation-induced cell killing and prolongation of γH2AX foci expression by the histone deacetylase inhibitor MS-275 [J].
Camphausen, K ;
Burgan, W ;
Cerra, M ;
Oswald, KA ;
Trepel, JB ;
Lee, MJ ;
Tofilon, PJ .
CANCER RESEARCH, 2004, 64 (01) :316-321
[9]   Initial Testing (Stage 1) of the Histone Deacetylase Inhibitor, Quisinostat (JNJ-26481585), by the Pediatric Preclinical Testing Program [J].
Carol, Hernan ;
Gorlick, Richard ;
Kolb, E. Anders ;
Morton, Christopher L. ;
Manesh, Donya Moradi ;
Keir, Stephen T. ;
Reynolds, C. Patrick ;
Kang, Min H. ;
Maris, John M. ;
Wozniak, Amy ;
Hickson, Ian ;
Lyalin, Dmitry ;
Kurmasheva, Raushan T. ;
Houghton, Peter J. ;
Smith, Malcolm A. ;
Lock, Richard .
PEDIATRIC BLOOD & CANCER, 2014, 61 (02) :245-252
[10]   The application of histone deacetylases inhibitors in glioblastoma [J].
Chen, Rui ;
Zhang, Mengxian ;
Zhou, Yangmei ;
Guo, Wenjing ;
Yi, Ming ;
Zhang, Ziyan ;
Ding, Yanpeng ;
Wang, Yali .
JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH, 2020, 39 (01)