Structural and Functional Insights into Viral Programmed Ribosomal Frameshifting

被引:8
|
作者
Hill, Chris H. [1 ]
Brierley, Ian [2 ]
机构
[1] Univ York, York Biomed Res Inst, York Struct Biol Lab, Dept Biol, York, N Yorkshire, England
[2] Univ Cambridge, Dept Pathol, Cambridge, England
基金
英国惠康基金; 英国生物技术与生命科学研究理事会;
关键词
ribosome; translation; frameshift; pseudoknot; SARS-CoV-2; HIV; RNA PSEUDOKNOT; MESSENGER-RNA; CRYSTAL-STRUCTURE; SARS-CORONAVIRUS; STEM-LOOP; CONFORMATIONAL PLASTICITY; MUTATIONAL ANALYSIS; HIV-1; TRANSLATION; EFFICIENCY;
D O I
10.1146/annurev-virology-111821-120646
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Protein synthesis by the ribosome is the final stage of biological information transfer and represents an irreversible commitment to gene expression. Accurate translation of messenger RNA is therefore essential to all life, and spontaneous errors by the translational machinery are highly infrequent (similar to 1/100,000 codons). Programmed ribosomal frameshifting ( is a mechanism in which the elongating ribosome is induced at high frequency to slip backward by one nucleotide at a defined position and to continue translation in the new reading frame. This is exploited as a translational regulation strategy by hundreds ofRNAviruses, which rely on during genome translation to control the stoichiometry of viral proteins. While early investigations of focused on virological and biochemical aspects, the application of X-ray crystallography and cryo-electron microscopy (cryo-EM), and the advent of deep sequencing and single-molecule approaches have revealed unexpected structural diversity and mechanistic complexity. Molecular players from several model systems have now been characterized in detail, both in isolation and, more recently, in the context of the elongating ribosome. Here we provide a summary of recent advances and discuss to what extent a general model for remains a useful way of thinking.
引用
收藏
页码:217 / 242
页数:26
相关论文
共 50 条
  • [1] Transactivation of programmed ribosomal frameshifting by a viral protein
    Li, Yanhua
    Treffers, Emmely E.
    Napthine, Sawsan
    Tas, Ali
    Zhu, Longchao
    Sun, Zhi
    Bell, Susanne
    Mark, Brian L.
    van Veelen, Peter A.
    van Hemert, Martijn J.
    Firth, Andrew E.
    Brierley, Ian
    Snijder, Eric J.
    Fang, Ying
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (21) : E2172 - E2181
  • [2] RIBOSOMAL FRAMESHIFTING ON VIRAL RNAS
    BRIERLEY, I
    JOURNAL OF GENERAL VIROLOGY, 1995, 76 : 1885 - 1892
  • [3] Cotranslational folding stimulates programmed ribosomal frameshifting in the alphavirus structural polyprotein
    Harrington, Haley R.
    Zimmer, Matthew H.
    Chamness, Laura M.
    Nash, Veronica
    Penn, Wesley D.
    Miller, Thomas F., III
    Mukhopadhyay, Suchetana
    Schlebach, Jonathan P.
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2020, 295 (20) : 6798 - 6808
  • [4] An 'integrated model' of programmed ribosomal frameshifting
    Harger, JW
    Meskauskas, A
    Dinman, JD
    TRENDS IN BIOCHEMICAL SCIENCES, 2002, 27 (09) : 448 - 454
  • [5] Programmed - 1 ribosomal frameshifting in the SARS coronavirus
    Dos Ramos, F
    Carrasco, M
    Doyle, T
    Brierley, I
    BIOCHEMICAL SOCIETY TRANSACTIONS, 2004, 32 : 1081 - 1083
  • [6] Thermodynamic control of −1 programmed ribosomal frameshifting
    Lars V. Bock
    Neva Caliskan
    Natalia Korniy
    Frank Peske
    Marina V. Rodnina
    Helmut Grubmüller
    Nature Communications, 10
  • [7] Programmed Ribosomal Frameshifting Mediates Expression of the α-Carboxysome
    Chaijarasphong, Thawatchai
    Nichols, Robert J.
    Kortright, Kaitlyn E.
    Nixon, Charlotte F.
    Teng, Poh K.
    Oltrogge, Luke M.
    Savage, David F.
    JOURNAL OF MOLECULAR BIOLOGY, 2016, 428 (01) : 153 - 164
  • [8] Abracadabra, One Becomes Two: The Importance of Context in Viral-1 Programmed Ribosomal Frameshifting
    Penn, Wesley D.
    Mukhopadhyay, Suchetana
    MBIO, 2022, 13 (04):
  • [9] Modulation of Viral Programmed Ribosomal Frameshifting and Stop Codon Readthrough by the Host Restriction Factor Shiftless
    Napthine, Sawsan
    Hill, Chris H.
    Nugent, Holly C. M.
    Brierley, Ian
    VIRUSES-BASEL, 2021, 13 (07):
  • [10] Structural basis of SARS-CoV-2 translational shutdown and programmed ribosomal frameshifting
    Ban, Nenad
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2021, 77 : C241 - C241