Micron-sized dust and nanoparticles produced in the WEST tokamak

被引:11
作者
Arnas, C. [1 ]
Campos, A. [2 ]
Diez, M. [3 ]
Peillon, S. [4 ]
Martin, C.
Hassouni, K. [5 ]
Michau, A. [5 ]
Bernard, E. [3 ]
Fedorczac, N. [3 ]
Gensdarmes, F. [4 ]
Grisolia, C. [3 ]
Pegourie, B. [3 ]
Tsitrone, E.
机构
[1] Aix Marseille Univ, CNRS, PIIM, F-13397 Marseille, France
[2] Aix Marseille Univ, CNRS, Cent Marseille, FSCM,CP2M, F-13397 Marseille, France
[3] IRFM CEA Cadarache, F-13108 St Paul Les Durance, France
[4] LPMA IRSN, F-91192 Gif Sur Yvette, France
[5] Univ Paris 13, Sorbonne Paris Cite, CNRS, LSPM, F-93430 Villetaneuse, France
关键词
WEST; Tokamak dust; W nanoparticle; He nanobubble; STEADY-STATE; LOW-ENERGY; TUNGSTEN; MICROSTRUCTURE; PARTICLES; COMPONENT;
D O I
10.1016/j.nme.2023.101471
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Two populations of dust particles were found during the first phase of operation of WEST. The one that dominates by size and weight comes from the delamination of tungsten coatings covering graphite tiles and the emission of droplets of molten materials during off-normal events. Sizes vary from several microns to tens of microns. More generally, micron-sized dust particles due to the erosion of all materials present in the vacuum vessel were collected. In addition, nanocavities were found at the surface of tungsten dust sampled after He plasmas and were attributed to He trapping in the form of nanobubbles. Tungsten nanoparticles constitute the second unexpected dust population. They are dominant by their number and were essentially found at the surface of micron-sized particles. They may result either from the condensation of an oversaturated vapor above molten tungsten or come from ion-neutral clusters growing in plasma regions of low temperature until the appearance of solid particles.
引用
收藏
页数:8
相关论文
共 47 条
[1]   Agglomeration of mesoscopic particles in plasma [J].
Annaratone, B. M. ;
Elskens, Y. ;
Arnas, C. ;
Antonova, T. ;
Thomas, H. M. ;
Morfill, G. E. .
NEW JOURNAL OF PHYSICS, 2009, 11
[2]   Characterization and origin of large size dust particles produced in the Alcator C-Mod tokamak [J].
Arnas, C. ;
Irby, J. ;
Celli, S. ;
De Temmerman, G. ;
Addab, Y. ;
Couedel, L. ;
Grisolia, C. ;
Lin, Y. ;
Martin, C. ;
Pardanaud, C. ;
Pierson, S. .
NUCLEAR MATERIALS AND ENERGY, 2017, 11 :12-19
[3]   Similarities and differences between dust produced in laboratory plasmas and in the MAST and Tore Supra tokamaks [J].
Arnas, C. ;
Martin, C. ;
Roubin, P. ;
Pegourie, B. ;
De Temmerman, G. ;
Hassouni, K. ;
Michau, A. ;
Lombardi, G. ;
Bonnin, X. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2010, 52 (12)
[4]   Analyses of dust samples collected in the MAST tokamak [J].
Arnas, C. ;
Pardanaud, C. ;
Martin, C. ;
Roubin, P. ;
De Temmerman, G. ;
Counsell, G. .
JOURNAL OF NUCLEAR MATERIALS, 2010, 401 (1-3) :130-137
[5]   Erosion and redeposition patterns on entire erosion marker tiles after exposure in the first operation phase of WEST [J].
Balden, M. ;
Mayer, M. ;
Bliewert, B. ;
Bernard, E. ;
Diez, M. ;
Firdaouss, M. ;
Missirlian, M. ;
Pegourie, B. ;
Richou, M. ;
Roche, H. ;
Tsitrone, E. ;
Martin, C. ;
Hakola, A. .
PHYSICA SCRIPTA, 2021, 96 (12)
[6]   Collection strategy, inner morphology, and size distribution of dust particles in ASDEX Upgrade [J].
Balden, M. ;
Endstrasser, N. ;
Humrickhouse, P. W. ;
Rohde, V. ;
Rasinski, M. ;
von Toussaint, U. ;
Elgeti, S. ;
Neu, R. .
NUCLEAR FUSION, 2014, 54 (07)
[7]   Helium induced nanoscopic morphology on tungsten under fusion relevant plasma conditions [J].
Baldwin, M. J. ;
Doerner, R. P. .
NUCLEAR FUSION, 2008, 48 (03)
[8]   Experimental and theoretical investigation of droplet emission from tungsten melt layer [J].
Bazylev, B. ;
Janeschitz, G. ;
Landman, I. ;
Loarte, A. ;
Klimov, N. S. ;
Podkovyrovd, V. L. ;
Safronov, V. M. .
FUSION ENGINEERING AND DESIGN, 2009, 84 (2-6) :441-445
[9]   Tungsten as a plasma-facing material in fusion devices: impact of helium high-temperature irradiation on hydrogen retention and damages in the material [J].
Bernard, E. ;
Sakamoto, R. ;
Kreter, A. ;
Barthe, M. F. ;
Autissier, E. ;
Desgardin, P. ;
Yamada, H. ;
Garcia-Argote, S. ;
Pieters, G. ;
Chene, J. ;
Rousseau, B. ;
Grisolia, C. .
PHYSICA SCRIPTA, 2017, T170
[10]   Intrinsic dust transport in ASDEX upgrade studied by fast imaging [J].
Brochard, F. ;
Rohde, V ;
Lunt, T. ;
Lopez, G. Suarez ;
Shalpegin, A. ;
Neu, R. .
NUCLEAR MATERIALS AND ENERGY, 2019, 18 :268-274