Clustering quantum Markov chains on trees associated with open quantum random walks

被引:0
作者
Accardi, Luigi [1 ]
Andolsi, Amenallah [2 ]
Mukhamedov, Farrukh [3 ]
Rhaima, Mohamed [4 ]
Souissi, Abdessatar [5 ]
机构
[1] Univ Roma Tor Vergata, Ctr Vito Volterra, I-00133 Rome, Italy
[2] Univ Tunis El Manar, Fac Sci Tunis, Nucl Phys & High Energy Phys Res Unit, Tunis 2092, Tunisia
[3] United Arab Emirates Univ, Coll Sci, Dept Math Sci, Al Ain 15551, U Arab Emirates
[4] King Saud Univ, Coll Sci, Dept Stat & Operat Res, POB 2455, Riyadh 11451, Saudi Arabia
[5] Univ Carthage, Math Phys Quantum Modeling & Mech Design, Carthage 1054, Tunisia
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 10期
关键词
Markov chains; quantum theory; clustering; Cayley tree; random walks; STATES; MODELS;
D O I
10.3934/math.20231170
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In networks, the Markov clustering (MCL) algorithm is one of the most efficient approaches in detecting clustered structures. The MCL algorithm takes as input a stochastic matrix, which depends on the adjacency matrix of the graph network under consideration. Quantum clustering algorithms are proven to be superefficient over the classical ones. Motivated by the idea of a potential clustering algorithm based on quantum Markov chains, we prove a clustering property for quantum Markov chains (QMCs) on Cayley trees associated with open quantum random walks (OQRW).
引用
收藏
页码:23003 / 23015
页数:13
相关论文
共 42 条
[1]  
ACCARDI L, 1983, P ROY IRISH ACAD A, V83, P251
[2]  
Accardi L., 1989, Quantum probability and applications IV. Proceedings of the Year of Quantum Probability, P73
[3]  
Accardi L., 1974, PROC INT SCH MATH PH, P268
[4]   A Markov-Dobrushin Inequality for Quantum Channels [J].
Accardi, Luigi ;
Lu, Yun Gang ;
Souissi, Abdessatar .
OPEN SYSTEMS & INFORMATION DYNAMICS, 2021, 28 (04)
[5]   Quantum Markov chains: A unification approach [J].
Accardi, Luigi ;
Souissi, Abdessatar ;
Soueidy, El Gheteb .
INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2020, 23 (02)
[6]   CONSTRUCTION OF A NEW CLASS OF QUANTUM MARKOV FIELDS [J].
Accardi, Luigi ;
Mukhamedov, Farrukh ;
Souissi, Abdessatar .
ADVANCES IN OPERATOR THEORY, 2016, 1 (02) :206-218
[7]   ON QUANTUM MARKOV CHAINS ON CAYLEY TREE I: UNIQUENESS OF THE ASSOCIATED CHAIN WITH XY-MODEL ON THE CAYLEY TREE OF ORDER TWO [J].
Accardi, Luigi ;
Mukhamedov, Farrukh ;
Saburov, Mansoor .
INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2011, 14 (03) :443-463
[8]   On Quantum Markov Chains on Cayley Tree II: Phase Transitions for the Associated Chain with XY-Model on the Cayley Tree of Order Three [J].
Accardi, Luigi ;
Mukhamedov, Farrukh ;
Saburov, Mansoor .
ANNALES HENRI POINCARE, 2011, 12 (06) :1109-1144
[9]   Open Quantum Random Walks [J].
Attal, S. ;
Petruccione, F. ;
Sabot, C. ;
Sinayskiy, I. .
JOURNAL OF STATISTICAL PHYSICS, 2012, 147 (04) :832-852
[10]   Recurrence of a class of quantum Markov chains on trees [J].
Barhoumi, Abdessatar ;
Souissi, Abdessatar .
CHAOS SOLITONS & FRACTALS, 2022, 164