IRS-Assisted MISO System With Phase Noise: Channel Estimation and Power Scaling Laws

被引:2
作者
Li, Chu [1 ]
van Delden, Marcel [2 ]
Sezgin, Aydin [1 ]
Musch, Thomas [2 ]
Han, Zhu [3 ,4 ]
机构
[1] Ruhr Univ Bochum, Digital Commun Syst, D-44801 Bochum, Germany
[2] Ruhr Univ Bochum, Elect Circuits, D-44801 Bochum, Germany
[3] Univ Houston, Dept Elect & Comp Engn, Houston, TX 77004 USA
[4] Kyung Hee Univ, Dept Comp Sci & Engn, Seoul 446701, South Korea
关键词
Intelligent reflecting surfaces (IRS); phase noise; LMMSE; scaling laws; INTELLIGENT REFLECTING SURFACE; MASSIVE MIMO SYSTEMS; ENERGY EFFICIENCY; ACHIEVABLE RATE; COMMUNICATION; PERFORMANCE; CAPACITY;
D O I
10.1109/TWC.2022.3222539
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Recent studies have shown that intelligent reflecting surfaces (IRS) can significantly improve the spectral and energy efficiency of wireless communication links. However, most works assume perfect transceivers and IRS, which is impractical in real communication systems. In this work, we study the effect of the hardware impairments in IRS-assisted MISO systems with single user, where we consider both phase noise caused by the imperfect transceivers and IRS. To this end, we propose a linear minimum mean square error (LMMSE) channel estimation algorithm that takes the phase noise into account. Furthermore, we study the impact of phase noise on the downlink performance of an IRS-assisted system. Both analytical and numerical results are presented, where we prove that the transceiver phase noise can be compensated with the optimized IRS, while the IRS phase noise remains but is not exacerbated. As the number of reflective elements N approaches infinity, the IRS phase noise results in a constant loss in terms of the ergodic rate. Moreover, we find that the phase noise has no impact on the scaling laws. If the direct channel is blocked and as N -> infinity, the transmit power can be scaled down by 1 N and 1 N2, respectively, for random and optimized IRS, without compromising the received signal to noise ratio (SNR).
引用
收藏
页码:3927 / 3941
页数:15
相关论文
共 37 条
[1]  
[Anonymous], 2008, RF imperfections in high-rate wireless systems: Impact and digital compensation
[2]  
[Anonymous], 2010, Further advancements for E-UTRA physical layer aspects (Release 9)
[3]   Communication Through a Large Reflecting Surface With Phase Errors [J].
Badiu, Mihai-Alin ;
Coon, Justin P. .
IEEE WIRELESS COMMUNICATIONS LETTERS, 2020, 9 (02) :184-188
[4]   Massive MIMO with Non-Ideal Arbitrary Arrays: Hardware Scaling Laws and Circuit-Aware Design [J].
Bjoernson, Emil ;
Matthaiou, Michail ;
Debbah, Merouane .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2015, 14 (08) :4353-4368
[5]   Reconfigurable Intelligent Surfaces: A signal processing perspective with wireless applications [J].
Bjornson, Emil ;
Wymeersch, Henk ;
Matthiesen, Bho ;
Popovski, Petar ;
Sanguinetti, Luca ;
de Carvalho, Elisabeth .
IEEE SIGNAL PROCESSING MAGAZINE, 2022, 39 (02) :135-158
[6]   Rayleigh Fading Modeling and Channel Hardening for Reconfigurable Intelligent Surfaces [J].
Bjornson, Emil ;
Sanguinetti, Luca .
IEEE WIRELESS COMMUNICATIONS LETTERS, 2021, 10 (04) :830-834
[7]   Intelligent Reflecting Surface Versus Decode-and-Forward: How Large Surfaces are Needed to Beat Relaying? [J].
Bjornson, Emil ;
Ozdogan, Ozgecan ;
Larsson, Erik G. .
IEEE WIRELESS COMMUNICATIONS LETTERS, 2020, 9 (02) :244-248
[8]   Massive MIMO networks: Spectral, energy, and hardware efficiency [J].
Björnson, Emil ;
Hoydis, Jakob ;
Sanguinetti, Luca .
Foundations and Trends in Signal Processing, 2017, 11 (3-4) :154-655
[9]   Massive MIMO Systems With Non-Ideal Hardware: Energy Efficiency, Estimation, and Capacity Limits [J].
Bjornson, Emil ;
Hoydis, Jakob ;
Kountouris, Marios ;
Debbah, Merouane .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (11) :7112-7139
[10]   What should 6G be? [J].
Dang, Shuping ;
Amin, Osama ;
Shihada, Basem ;
Alouini, Mohamed-Slim .
NATURE ELECTRONICS, 2020, 3 (01) :20-29