Surface-Engineered TiO2 for High-Performance Flexible Supercapacitor Applications

被引:24
作者
Elshahawy, Abdelnaby M. M. [1 ]
Elkatlawy, Saeid M. M. [2 ]
Shalaby, Mustafa S. S. [3 ]
Guan, Cao [4 ]
Wang, John [5 ]
机构
[1] Assiut Univ, Fac Sci, Dept Phys, Assiut 71516, Egypt
[2] Damanhour Univ, Fac Sci, Dept Phys, Damanhour 22111, Egypt
[3] Egyptian Atom Energy Author, Natl Ctr Radiat Res & Technol, Solid State Phys & Accelerators Dept, Cairo, Egypt
[4] Northwestern Polytech Univ, Inst Flexible Elect, Frontiers Sci Ctr Flexible Elect, Xian 710072, Peoples R China
[5] Natl Univ Singapore, Dept Mat Sci & Engn, 9 Engn Dr 1, Singapore 117575, Singapore
关键词
Rutile TiO2; pseudocapacitance; surface engineering; nanorod arrays; supercapacitor; NANOTUBE ARRAYS; NANOPARTICLES; NANOSHEETS; GRAPHENE;
D O I
10.1007/s11664-022-10084-0
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Titanium dioxide (TiO2) shows excellent pseudocapacitive properties. However, the low internal conductivity of TiO2 limits its use in supercapacitor applications. Therefore, an efficient surface engineering process was developed to enhance the overall pseudocapacitive performance of rutile TiO2 nanorods. Specifically, surface-engineered TiO2 nanorod arrays coordinated on carbon cloth were established through the Kapton tape-assisted hydrothermal route. X-ray diffraction analysis confirmed the formation of a tetragonal TiO2 rutile phase. Morphological analysis revealed the formation of uniform nanorods with an apparent high surface-to-volume aspect ratio. X-ray photoelectron spectroscopy analysis showed that the TiO2 synthesized in the presence of Kapton tape and annealed under air had high content of hydroxyl groups and Ti3+, which is favorable for supercapacitor performance. Surface treatment of the samples led to significantly enhanced conductivity and electrochemical behavior of TiO2. The surface-engineered TiO2 nanorod arrays show specific capacitance of about 57.62 mF/cm(2) at 10 mV/s in 2 M KOH, with excellent rate capability of about 83% at 200 mV/s, and also exhibit long cycle life, retaining 91% of their original capacitance after 10,000 charge/discharge cycles, which is among the highest values reported for TiO2-based supercapacitors.
引用
收藏
页码:1347 / 1356
页数:10
相关论文
共 43 条
[1]   Annealing-Free Synthesis of K-doped Mixed-Phase TiO2 Nanofibers on Ti Foil for Electrochemical Supercapacitor [J].
Barai, Hasi Rani ;
Rahman, Md. Mahbubur ;
Joo, Sang Woo .
ELECTROCHIMICA ACTA, 2017, 253 :563-571
[2]   Photocatalytic pure water splitting with high efficiency and value by Pt/porous brookite TiO2 nanoflutes [J].
Cao, Shuang ;
Chan, Ting-Shan ;
Lu, Ying-Rui ;
Shi, Xinghua ;
Fu, Bing ;
Wu, Zhijiao ;
Li, Hongmei ;
Liu, Kang ;
Alzuabi, Sarah ;
Cheng, Ping ;
Liu, Min ;
Li, Tao ;
Chen, Xiaobo ;
Piao, Lingyu .
NANO ENERGY, 2020, 67
[3]   Sulfur-doped cobalt phosphide nanotube arrays for highly stable hybrid supercapacitor [J].
Elshahawy, Abdelnaby M. ;
Guan, Cao ;
Li, Xin ;
Zhang, Hong ;
Hu, Yating ;
Wu, Haijun ;
Pennycook, Stephen J. ;
Wang, John .
NANO ENERGY, 2017, 39 :162-171
[4]   In situ decoration of laser-scribed graphene with TiO2 nanoparticles for scalable high-performance micro-supercapacitors [J].
Fornasini, Laura ;
Scaravonati, Silvio ;
Magnani, Giacomo ;
Morenghi, Alberto ;
Sidoli, Michele ;
Bersani, Danilo ;
Bertoni, Giovanni ;
Aversa, Lucrezia ;
Verucchi, Roberto ;
Ricco, Mauro ;
Lottici, Pier Paolo ;
Pontiroli, Daniele .
CARBON, 2021, 176 :296-306
[5]   Anatase TiO2 Confined in Carbon Nanopores for High-Energy Li-Ion Hybrid Supercapacitors Operating at High Rates and Subzero Temperatures [J].
Fu, Wenbin ;
Zhao, Enbo ;
Ma, Ruiying ;
Sun, Zifei ;
Yang, Yang ;
Sevilla, Marta ;
Fuertes, Antonio B. ;
Magasinski, Alexandre ;
Yushin, Gleb .
ADVANCED ENERGY MATERIALS, 2020, 10 (02)
[6]   Novel synergistic combination of Cu/S co-doped TiO2 nanoparticles incorporated as photoanode in dye sensitized solar cell [J].
Gupta, Anuradha ;
Sahu, Kirti ;
Dhonde, Mahesh ;
Murty, V. V. S. .
SOLAR ENERGY, 2020, 203 :296-303
[7]   VO2/TiO2 Nanosponges as Binder-Free Electrodes for High-Performance Supercapacitors [J].
Hu, Chenchen ;
Xu, Henghui ;
Liu, Xiaoxiao ;
Zou, Feng ;
Qie, Long ;
Huang, Yunhui ;
Hu, Xianluo .
SCIENTIFIC REPORTS, 2015, 5
[8]   Surface-Charge-Mediated Formation of H-TiO2@Ni(OH)2 Heterostructures for High-Performance Supercapacitors [J].
Ke, Qingqing ;
Guan, Cao ;
Zhang, Xiao ;
Zheng, Minrui ;
Zhang, Yong-Wei ;
Cai, Yongqing ;
Zhang, Hua ;
Wang, John .
ADVANCED MATERIALS, 2017, 29 (05)
[9]   3D TiO2@Ni(OH)2 Core-shell Arrays with Tunable Nanostructure for Hybrid Supercapacitor Application [J].
Ke, Qingqing ;
Zheng, Minrui ;
Liu, Huajun ;
Guan, Cao ;
Mao, Lu ;
Wang, John .
SCIENTIFIC REPORTS, 2015, 5
[10]   Capacitive and Oxidant Generating Properties of Black-Colored TiO2 Nanotube Array Fabricated by Electrochemical Self-Doping [J].
Kim, Choonsoo ;
Kim, Seonghwan ;
Lee, Jaehan ;
Kim, Jiye ;
Yoon, Jeyong .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (14) :7486-7491