Embedded edge connectivity of k-ary n-cubes

被引:8
|
作者
Yang, Yuxing [1 ,2 ]
机构
[1] Henan Normal Univ, Sch Math & Informat Sci, Xinxiang 453007, Henan, Peoples R China
[2] Henan Normal Univ, Henan Engn Lab Big Data & Stat Anal & Optimal Cont, Xinxiang 453007, Henan, Peoples R China
关键词
Interconnection network; k-ary n-cubes; Fault tolerance; Embedded edge connectivity; CONDITIONAL CONNECTIVITY; TOPOLOGICAL PROPERTIES; NETWORKS;
D O I
10.1016/j.ipl.2022.106328
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The t-embedded edge connectivity eta t(Gn) of an n-dimensional recursive network Gn is the minimum number of edges, if any, whose removal disconnects Gn and each vertex of the resultant network lies in a t-dimensional subnetwork of Gn. The k-ary n-cube is one of the most attractive interconnection networks for parallel computer systems. One of the main results in [15] showed that eta t(Qn3) = 2(n - t)3t for 0 < t < n -1. In this short paper, we generalize the above result and prove that eta t(Qnk) = 2(n - t)kt for 0 < t < n - 1 and odd k > 3.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Bipancyclicity in k-Ary n-Cubes with Faulty Edges under a Conditional Fault Assumption
    Xiang, Yonghong
    Stewart, Iain A.
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2011, 22 (09) : 1506 - 1513
  • [42] Paired 2-disjoint path covers of k-ary n-cubes under the partitioned edge fault model
    Zhuang, Hongbin
    Li, Xiao-Yan
    Chang, Jou-Ming
    Liu, Ximeng
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2024, 190
  • [43] Mutually Independent Hamiltonian Cycles in k-ary n-cubes when k is odd
    Kao, Shin-Shin
    Wang, Pi-Hsiang
    PROCEEDINGS OF THE AMERICAN CONFERENCE ON APPLIED MATHEMATICS: RECENT ADVANCES IN APPLIED MATHEMATICS, 2009, : 116 - +
  • [44] Determining the Conditional Diagnosability of k-Ary n-Cubes Under the MM Model
    Hsieh, Sun-Yuan
    Kao, Chi-Ya
    STRUCTURAL INFORMATION AND COMMUNICATION COMPLEXITY, 2011, 6796 : 78 - 88
  • [45] One-to-one disjoint path covers on k-ary n-cubes
    Shih, Yuan-Kang
    Kao, Shin-Shin
    THEORETICAL COMPUTER SCIENCE, 2011, 412 (35) : 4513 - 4530
  • [46] Mutually independent Hamiltonian cycles in k-ary n-cubes when k is even
    Su, Hsun
    Pan, Jing-Ling
    Kao, Shin-Shin
    COMPUTERS & ELECTRICAL ENGINEERING, 2011, 37 (03) : 319 - 331
  • [47] Parallel Lagrange interpolation on k-ary n-cubes with maximum channel utilization
    Mahabadi, Aminollah
    Sarbazi-Azad, Hamid
    Khodaie, Ebrahim
    Navi, Keivan
    JOURNAL OF SUPERCOMPUTING, 2008, 46 (01) : 1 - 14
  • [48] A partial irregular-network routing on faulty k-ary n-cubes
    Koibuchi, Michihiro
    Yoshinaga, Tsutomu
    Nishimura, Yasuhiko
    INTERNATIONAL WORKSHOP ON INNOVATIVE ARCHITECTURE FOR FUTURE GENERATION HIGH PERFORMANCE PROCESSORS AND SYSTEMS, 2006, : 57 - 64
  • [49] A type of perfect matchings extend to hamiltonian cycles in k-ary n-cubes
    Wang, Fan
    Sun, Wuyang
    THEORETICAL COMPUTER SCIENCE, 2018, 731 : 28 - 35
  • [50] Hamiltonian circuit and linear array embeddings in faulty k-ary n-cubes
    Yang, Ming-Chien
    Tan, Jimmy J. M.
    Hsu, Lih-Hsing
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2007, 67 (04) : 362 - 368