Embedded edge connectivity of k-ary n-cubes

被引:8
|
作者
Yang, Yuxing [1 ,2 ]
机构
[1] Henan Normal Univ, Sch Math & Informat Sci, Xinxiang 453007, Henan, Peoples R China
[2] Henan Normal Univ, Henan Engn Lab Big Data & Stat Anal & Optimal Cont, Xinxiang 453007, Henan, Peoples R China
关键词
Interconnection network; k-ary n-cubes; Fault tolerance; Embedded edge connectivity; CONDITIONAL CONNECTIVITY; TOPOLOGICAL PROPERTIES; NETWORKS;
D O I
10.1016/j.ipl.2022.106328
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The t-embedded edge connectivity eta t(Gn) of an n-dimensional recursive network Gn is the minimum number of edges, if any, whose removal disconnects Gn and each vertex of the resultant network lies in a t-dimensional subnetwork of Gn. The k-ary n-cube is one of the most attractive interconnection networks for parallel computer systems. One of the main results in [15] showed that eta t(Qn3) = 2(n - t)3t for 0 < t < n -1. In this short paper, we generalize the above result and prove that eta t(Qnk) = 2(n - t)kt for 0 < t < n - 1 and odd k > 3.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Edge-bipancyclicity of the k-ary n-cubes with faulty nodes and edges
    Li, Jing
    Wang, Shiying
    Liu, Di
    Lin, Shangwei
    INFORMATION SCIENCES, 2011, 181 (11) : 2260 - 2267
  • [22] Panconnectivity and edge-pancyclicity of k-ary n-cubes with faulty elements
    Lin, Shangwei
    Wang, Shiying
    Li, Chunfang
    DISCRETE APPLIED MATHEMATICS, 2011, 159 (04) : 212 - 223
  • [23] Subnetwork reliability analysis in k-ary n-cubes
    Feng, Kai
    Ji, Zhangjian
    Wei, Wei
    DISCRETE APPLIED MATHEMATICS, 2019, 267 : 85 - 92
  • [24] Embedding various cycles with prescribed paths into k-ary n-cubes
    Yang, Yuxing
    Li, Jing
    Wang, Shiying
    DISCRETE APPLIED MATHEMATICS, 2017, 220 : 161 - 169
  • [25] RESOURCE PLACEMENT WITH MULTIPLE ADJACENCY CONSTRAINTS IN K-ARY N-CUBES
    RAMANATHAN, P
    CHALASANI, S
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 1995, 6 (05) : 511 - 519
  • [26] Hamiltonian path embeddings in conditional faulty k-ary n-cubes
    Wang, Shiying
    Zhang, Shurong
    Yang, Yuxing
    INFORMATION SCIENCES, 2014, 268 : 463 - 488
  • [27] Strong Menger Connectedness of Augmented k-ary n-cubes
    Gu, Mei-Mei
    Chang, Jou-Ming
    Hao, Rong-Xia
    COMPUTER JOURNAL, 2021, 64 (05) : 812 - 825
  • [28] Matching preclusion for k-ary n-cubes with odd k ≥ 3
    Hu, Xiaomin
    Zhao, Bin
    Tian, Yingzhi
    Meng, Jixiang
    DISCRETE APPLIED MATHEMATICS, 2017, 229 : 90 - 100
  • [29] Matchings extend to Hamiltonian cycles in k-ary n-cubes
    Wang, Fan
    Zhang, Heping
    INFORMATION SCIENCES, 2015, 305 : 1 - 13
  • [30] LEE DISTANCE AND TOPOLOGICAL PROPERTIES OF K-ARY N-CUBES
    BOSE, B
    BROEG, B
    KWON, Y
    ASHIR, Y
    IEEE TRANSACTIONS ON COMPUTERS, 1995, 44 (08) : 1021 - 1030