Hopf Bifurcation of a Delayed Single Population Model with Patch Structure

被引:4
作者
Chen, Shanshan [1 ]
Shen, Zuolin [2 ]
Wei, Junjie [1 ,3 ]
机构
[1] Harbin Inst Technol, Dept Math, Weihai 264209, Shandong, Peoples R China
[2] Harbin Inst Technol, Dept Basic Educ, Rongcheng Campus, Weihai 264209, Shandong, Peoples R China
[3] Jimei Univ, Sch Sci, Xiamen 361021, Fujian, Peoples R China
基金
中国国家自然科学基金;
关键词
Hopf bifurcation; Patch structure; Delay; Dispersal;
D O I
10.1007/s10884-021-09946-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we show the existence of a Hopf bifurcation in a delayed single population model with patch structure. The effect of the dispersal rate on the Hopf bifurcation is considered. Especially, if each patch is favorable for the species, we show that when the dispersal rate tends to zero, the limit of the Hopf bifurcation value is the minimum of the "local" Hopf bifurcation values over all patches. On the other hand, when the dispersal rate tends to infinity, the Hopf bifurcation value tends to that of the "average" model.
引用
收藏
页码:1457 / 1487
页数:31
相关论文
共 25 条
[1]   Asymptotic profiles of the steady states for an sis epidemic patch model [J].
Allen, L. J. S. ;
Bolker, B. M. ;
Lou, Y. ;
Nevai, A. L. .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2007, 67 (05) :1283-1309
[2]   Stability and Hopf bifurcation for a population delay model with diffusion effects [J].
Busenberg, S ;
Huang, WZ .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1996, 124 (01) :80-107
[3]  
Chen S., SPECTRAL MONOT UNPUB
[4]   Hopf bifurcation in a delayed reaction-diffusion-advection population model [J].
Chen, Shanshan ;
Lou, Yuan ;
Wei, Junjie .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 264 (08) :5333-5359
[5]   Stability and bifurcations in a nonlocal delayed reaction-diffusion population model [J].
Chen, Shanshan ;
Yu, Jianshe .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (01) :218-240
[6]   Stability and Hopf bifurcation in a diffusive logistic population model with nonlocal delay effect [J].
Chen, Shanshan ;
Shi, Junping .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 253 (12) :3440-3470
[7]  
Crandall M., 1971, J. Func. Anal, V8, P321, DOI [10.1016/0022-1236(71)90015-2, DOI 10.1016/0022-1236(71)90015-2]
[8]   Spatio-temporal patterns in a diffusive model with non-local delay effect [J].
Guo, Shangjiang .
IMA JOURNAL OF APPLIED MATHEMATICS, 2017, 82 (04) :864-908
[9]   Hopf bifurcation in a diffusive Lotka-Volterra type system with nonlocal delay effect [J].
Guo, Shangjiang ;
Yan, Shuling .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (01) :781-817
[10]   Stability and bifurcation in a reaction-diffusion model with nonlocal delay effect [J].
Guo, Shangjiang .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (04) :1409-1448