Efficient kernel canonical correlation analysis using Nyström approximation

被引:0
作者
Fang, Qin [1 ]
Shi, Lei [2 ,3 ,4 ]
Xu, Min [5 ]
Zhou, Ding-Xuan [6 ]
机构
[1] Dalian Univ, Informat & Engn Coll, Dalian 116622, Peoples R China
[2] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[3] Fudan Univ, Shanghai Key Lab Contemporary Appl Math, Shanghai 200433, Peoples R China
[4] Shanghai Artificial Intelligence Lab, 701 Yunjin Rd, Shanghai 200232, Peoples R China
[5] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China
[6] Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, Australia
基金
中国国家自然科学基金;
关键词
kernel canonical correlation analysis; Nystrom approximation; cross-covariance operator; covariance; NYSTROM METHOD; 2; SETS; ALGORITHMS;
D O I
10.1088/1361-6420/ad2900
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main contribution of this paper is the derivation of non-asymptotic convergence rates for Nystrom kernel canonical correlation analysis (CCA) in a setting of statistical learning. Our theoretical results reveal that, under certain conditions, Nystrom kernel CCA can achieve a convergence rate comparable to that of the standard kernel CCA, while offering significant computational savings. This finding has important implications for the practical application of kernel CCA, particularly in scenarios where computational efficiency is crucial. Numerical experiments are provided to demonstrate the effectiveness of Nystrom kernel CCA.
引用
收藏
页数:26
相关论文
共 50 条
  • [41] Canonical Concordance Correlation Analysis
    Lipovetsky, Stan
    MATHEMATICS, 2023, 11 (01)
  • [42] Efficient Constrained Optimization by the ε Constrained Differential Evolution with Rough Approximation Using Kernel Regression
    Takahama, Tetsuyuki
    Sakai, Setsuko
    2013 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2013, : 1334 - 1341
  • [43] Independence test and canonical correlation analysis based on the alignment between kernel matrices for multivariate functional data
    Gorecki, Tomasz
    Krzysko, Miroslaw
    Wolynski, Waldemar
    ARTIFICIAL INTELLIGENCE REVIEW, 2020, 53 (01) : 475 - 499
  • [44] K-Means Clustering-based Kernel Canonical Correlation Analysis for Multimodal Emotion Recognition
    Chen, Luefeng
    Wang, Kuanlin
    Wu, Min
    Pedrycz, Witold
    Hirota, Kaoru
    IFAC PAPERSONLINE, 2020, 53 (02): : 10250 - 10254
  • [45] Adaptive Missing Texture Reconstruction Method Based on Kernel Canonical Correlation Analysis with a New Clustering Scheme
    Ogawa, Takahiro
    Haseyama, Miki
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2009, E92A (08) : 1950 - 1960
  • [46] FUSION OF FMRI, SMRI, AND EEG DATA USING CANONICAL CORRELATION ANALYSIS
    Correa, Nicolle M.
    Li, Yi-Ou
    Adalt, Tuelay
    Calhoun, Vince D.
    2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS, 2009, : 385 - +
  • [47] An Extension of Dominance Analysis to Canonical Correlation Analysis
    Huo, Yan
    Budescu, David V.
    MULTIVARIATE BEHAVIORAL RESEARCH, 2009, 44 (05) : 688 - 709
  • [48] Study on Detection of Chilled Mutton Freshness Based on Hyperspectral Imaging Technique and Sparse Kernel Canonical Correlation Analysis
    Jiang Xin-hua
    Xue He-ru
    Gao Xiao-jing
    Zhang Li-na
    Zhou Yan-qing
    Du Ya-juan
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38 (08) : 2498 - 2504
  • [49] Tensor generalized canonical correlation analysis
    Girka, Fabien
    Gloaguen, Arnaud
    Le Brusquet, Laurent
    Zujovic, Violetta
    Tenenhaus, Arthur
    INFORMATION FUSION, 2024, 102
  • [50] Quantum discriminative canonical correlation analysis
    Li, Yong-Mei
    Liu, Hai-Ling
    Pan, Shi-Jie
    Qin, Su-Juan
    Gao, Fei
    Wen, Qiao-Yan
    QUANTUM INFORMATION PROCESSING, 2023, 22 (04)