DA-CapsNet: A multi-branch capsule network based on adversarial domain adaption for cross-subject EEG emotion recognition

被引:30
|
作者
Liu, Shuaiqi [1 ,2 ,3 ]
Wang, Zeyao [1 ,4 ]
An, Yanling [5 ]
Li, Bing [3 ]
Wang, Xinrui [1 ,4 ]
Zhang, Yudong [6 ]
机构
[1] Hebei Univ, Coll Elect & Informat Engn, Baoding 071000, Hebei, Peoples R China
[2] Machine Vis Technol Innovat Ctr Hebei Prov, Baoding 071000, Peoples R China
[3] Chinese Acad Sci, Inst Automat, State Key Lab Multimodal Artificial Intelligence S, Beijing 100190, Peoples R China
[4] Key Lab Digital Med Engn Hebei Prov, Baoding 071002, Peoples R China
[5] Beijing Jiaotong Univ, Inst Informat Sci, Beijing 100044, Peoples R China
[6] Univ Leicester, Sch Comp & Math, Leicester LE1 7RH, England
基金
中国国家自然科学基金;
关键词
EEG emotion recognition; Capsule network; Adversarial domain adaptation; Transfer learning;
D O I
10.1016/j.knosys.2023.111137
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Due to inter-individual variances, cross-subject electroencephalogram (EEG)-based emotion recognition is a challenging task. In this paper, we construct a multi-branch Capsule network (named DA-CapsNet) based on domain adaptation to improve the performance of cross-subject EEG emotion recognition. To fully capture the various intensity characteristics of a single emotion, firstly, DA-CapsNet decomposes the source and the target domain EEG signals into four frequency bands and homomorphically groups the data in each band, and then extracts the differential entropy (DE) features for each group separately. Taking into account the spatial arrangement of the electrodes, the DE features are mapped into a two-dimensional matrix to form a homomorphic difference cube sequence (HDCS). Second, to enhance the feature information of the same emotion and accelerate the run efficiency of the network, a parallel structured multi-branch primary Capsual network (CapsNet) is constructed in this paper. The multi-branch primary CapsNet can effectively extract the aforementioned sequence discriminative features and fuse them as the input features of the capsule emotion classifier. Finally, to lessen inter-domain distribution discrepancies, we brought adversarial domain adaptation to improve the performance of cross-subject emotion recognition. Numerous tests are run on the three public datasets of EEG, and the results show that the proposed algorithm in this paper works well.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] DA-CapsNet: A multi-branch capsule network based on adversarial domain adaption for cross-subject EEG emotion recognition
    Liu, Shuaiqi
    Wang, Zeyao
    An, Yanling
    Li, Bing
    Wang, Xinrui
    Zhang, Yudong
    Knowledge-Based Systems, 2024, 283
  • [2] Cross-subject EEG-based Emotion Recognition Using Adversarial Domain Adaption with Attention Mechanism
    Ye, Yalan
    Zhu, Xin
    Li, Yunxia
    Pan, Tongjie
    He, Wenwen
    2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, : 1140 - 1144
  • [3] Cross-subject EEG emotion classification based on few-label adversarial domain adaption
    Wang, Yingdong
    Liu, Jiatong
    Ruan, Qunsheng
    Wang, Shuocheng
    Wang, Chen
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 185
  • [4] Adversarial Discriminative Domain Adaptation and Transformers for EEG-based Cross-Subject Emotion Recognition
    Sartipi, Shadi
    Cetin, Mujdat
    2023 11TH INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING, NER, 2023,
  • [5] Domain Adversarial Neural Network with Reliable Pseudo-labels Iteration for cross-subject EEG emotion recognition
    Ju, Xiangyu
    Su, Jianpo
    Dai, Sheng
    Wu, Xu
    Li, Ming
    Hu, Dewen
    KNOWLEDGE-BASED SYSTEMS, 2025, 316
  • [6] Multi-source Selective Graph Domain Adaptation Network for cross-subject EEG emotion recognition
    Wang, Jing
    Ning, Xiaojun
    Xu, Wei
    Li, Yunze
    Jia, Ziyu
    Lin, Youfang
    NEURAL NETWORKS, 2024, 180
  • [7] Cross-Subject Emotion Recognition Based on Domain Similarity of EEG Signal Transfer
    Ma, Yuliang
    Zhao, Weicheng
    Meng, Ming
    Zhang, Qizhong
    She, Qingshan
    Zhang, Jianhai
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2023, 31 : 936 - 943
  • [8] Cross-Subject EEG-Based Emotion Recognition with Deep Domain Confusion
    Zhang, Weiwei
    Wang, Fei
    Jiang, Yang
    Xu, Zongfeng
    Wu, Shichao
    Zhang, Yahui
    INTELLIGENT ROBOTICS AND APPLICATIONS, ICIRA 2019, PT I, 2019, 11740 : 558 - 570
  • [9] JOINT TEMPORAL CONVOLUTIONAL NETWORKS AND ADVERSARIAL DISCRIMINATIVE DOMAIN ADAPTATION FOR EEG-BASED CROSS-SUBJECT EMOTION RECOGNITION
    He, Zhipeng
    Zhong, Yongshi
    Pan, Jiahui
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 3214 - 3218
  • [10] Cross-Subject Emotion Recognition Based on Domain Similarity of EEG Signal Transfer Learning
    Ma, Yuliang
    Zhao, Weicheng
    Meng, Ming
    Zhang, Qizhong
    She, Qingshan
    Zhang, Jianhai
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2023, 31 : 936 - 943