DA-CapsNet: A multi-branch capsule network based on adversarial domain adaption for cross-subject EEG emotion recognition

被引:31
作者
Liu, Shuaiqi [1 ,2 ,3 ]
Wang, Zeyao [1 ,4 ]
An, Yanling [5 ]
Li, Bing [3 ]
Wang, Xinrui [1 ,4 ]
Zhang, Yudong [6 ]
机构
[1] Hebei Univ, Coll Elect & Informat Engn, Baoding 071000, Hebei, Peoples R China
[2] Machine Vis Technol Innovat Ctr Hebei Prov, Baoding 071000, Peoples R China
[3] Chinese Acad Sci, Inst Automat, State Key Lab Multimodal Artificial Intelligence S, Beijing 100190, Peoples R China
[4] Key Lab Digital Med Engn Hebei Prov, Baoding 071002, Peoples R China
[5] Beijing Jiaotong Univ, Inst Informat Sci, Beijing 100044, Peoples R China
[6] Univ Leicester, Sch Comp & Math, Leicester LE1 7RH, England
基金
中国国家自然科学基金;
关键词
EEG emotion recognition; Capsule network; Adversarial domain adaptation; Transfer learning;
D O I
10.1016/j.knosys.2023.111137
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Due to inter-individual variances, cross-subject electroencephalogram (EEG)-based emotion recognition is a challenging task. In this paper, we construct a multi-branch Capsule network (named DA-CapsNet) based on domain adaptation to improve the performance of cross-subject EEG emotion recognition. To fully capture the various intensity characteristics of a single emotion, firstly, DA-CapsNet decomposes the source and the target domain EEG signals into four frequency bands and homomorphically groups the data in each band, and then extracts the differential entropy (DE) features for each group separately. Taking into account the spatial arrangement of the electrodes, the DE features are mapped into a two-dimensional matrix to form a homomorphic difference cube sequence (HDCS). Second, to enhance the feature information of the same emotion and accelerate the run efficiency of the network, a parallel structured multi-branch primary Capsual network (CapsNet) is constructed in this paper. The multi-branch primary CapsNet can effectively extract the aforementioned sequence discriminative features and fuse them as the input features of the capsule emotion classifier. Finally, to lessen inter-domain distribution discrepancies, we brought adversarial domain adaptation to improve the performance of cross-subject emotion recognition. Numerous tests are run on the three public datasets of EEG, and the results show that the proposed algorithm in this paper works well.
引用
收藏
页数:12
相关论文
共 41 条
  • [1] Multi-Input Dual-Stream Capsule Network for Improved Lung and Colon Cancer Classification
    Ali, Mumtaz
    Ali, Riaz
    [J]. DIAGNOSTICS, 2021, 11 (08)
  • [2] From Intricacy to Conciseness: A Progressive Transfer Strategy for EEG-Based Cross-Subject Emotion Recognition
    Cai, Ziliang
    Wang, Lingyue
    Guo, Miaomiao
    Xu, Guizhi
    Guo, Lei
    Li, Ying
    [J]. INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2022, 32 (03)
  • [3] Emotion Recognition from Multiband EEG Signals Using CapsNet
    Chao, Hao
    Dong, Liang
    Liu, Yongli
    Lu, Baoyun
    [J]. SENSORS, 2019, 19 (09)
  • [4] Exploring Simple Siamese Representation Learning
    Chen, Xinlei
    He, Kaiming
    [J]. 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 15745 - 15753
  • [5] Emotion recognition in human-computer interaction
    Cowie, R
    Douglas-Cowie, E
    Tsapatsoulis, N
    Votsis, G
    Kollias, S
    Fellenz, W
    Taylor, JG
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2001, 18 (01) : 32 - 80
  • [6] EEG-based emotion recognition via capsule network with channel-wise attention and LSTM models
    Deng, Lina
    Wang, Xiaoliang
    Jiang, Frank
    Doss, Robin
    [J]. CCF TRANSACTIONS ON PERVASIVE COMPUTING AND INTERACTION, 2021, 3 (04) : 425 - 435
  • [7] Duan RN, 2013, I IEEE EMBS C NEUR E, P81, DOI 10.1109/NER.2013.6695876
  • [8] Ganin Y, 2015, PR MACH LEARN RES, V37, P1180
  • [9] A Domain Generative Graph Network for EEG-Based Emotion Recognition
    Gu, Yun
    Zhong, Xinyue
    Qu, Cheng
    Liu, Chuanjun
    Chen, Bin
    [J]. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2023, 27 (05) : 2377 - 2386
  • [10] A novel Capsule Neural Network based model for drowsiness detection using electroencephalography signals
    Guarda, Luis
    Tapia, Juan E.
    Lopez Droguett, Enrique
    Ramos, Marcelo
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2022, 201