DISA: DIfferentiable Similarity Approximation for Universal Multimodal Registration

被引:9
作者
Ronchetti, Matteo [1 ,2 ]
Wein, Wolfgang [1 ]
Navab, Nassir [2 ]
Zettinig, Oliver [1 ]
Prevost, Raphael [1 ]
机构
[1] ImFusion GmbH, Munich, Germany
[2] Tech Univ Munich, Comp Aided Med Procedures CAMP, Munich, Germany
来源
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT X | 2023年 / 14229卷
关键词
Image Registration; Multimodal; Metric Learning; Differentiable; Deformable Registration; ULTRASOUND; MRI;
D O I
10.1007/978-3-031-43999-5_72
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multimodal image registration is a challenging but essential step for numerous image-guided procedures. Most registration algorithms rely on the computation of complex, frequently non-differentiable similarity metrics to deal with the appearance discrepancy of anatomical structures between imaging modalities. Recent Machine Learning based approaches are limited to specific anatomy-modality combinations and do not generalize to new settings. We propose a generic framework for creating expressive cross-modal descriptors that enable fast deformable global registration. We achieve this by approximating existing metrics with a dot-product in the feature space of a small convolutional neural network (CNN) which is inherently differentiable can be trained without registered data. Our method is several orders of magnitude faster than local patch-based metrics and can be directly applied in clinical settings by replacing the similarity measure with the proposed one. Experiments on three different datasets demonstrate that our approach generalizes well beyond the training data, yielding a broad capture range even on unseen anatomies and modality pairs, without the need for specialized retraining. We make our training code and data publicly available.
引用
收藏
页码:761 / 770
页数:10
相关论文
共 26 条
[1]  
[Anonymous], 2010, Limited memory BFGS for nonsmooth optimization
[2]   Towards Fully Automatic X-Ray to CT Registration [J].
Esteban, Javier ;
Grimm, Matthias ;
Unberath, Mathias ;
Zahnd, Guillaume ;
Navab, Nassir .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT VI, 2019, 11769 :631-639
[3]   Automatic ultrasound-MRI registration for neurosurgery using the 2D and 3D LC2 Metric [J].
Fuerst, Bernhard ;
Wein, Wolfgang ;
Mueller, Markus ;
Navab, Nassir .
MEDICAL IMAGE ANALYSIS, 2014, 18 (08) :1312-1319
[4]   Learning deep similarity metric for 3D MR-TRUS image registration [J].
Haskins, Grant ;
Kruecker, Jochen ;
Kruger, Uwe ;
Xu, Sheng ;
Pinto, Peter A. ;
Wood, Brad J. ;
Yan, Pingkun .
INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2019, 14 (03) :417-425
[5]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[6]  
Heinrich MP, 2014, LECT NOTES COMPUT SC, V8545, P51, DOI 10.1007/978-3-319-08554-8_6
[7]   MIND: Modality independent neighbourhood descriptor for multi-modal deformable registration [J].
Heinrich, Mattias P. ;
Jenkinson, Mark ;
Bhushan, Manav ;
Matin, Tahreema ;
Gleeson, Fergus V. ;
Brady, Sir Michael ;
Schnabel, Julia A. .
MEDICAL IMAGE ANALYSIS, 2012, 16 (07) :1423-1435
[8]  
Heinrich MP, 2013, LECT NOTES COMPUT SC, V8149, P187, DOI 10.1007/978-3-642-40811-3_24
[9]   Learn2Reg: Comprehensive Multi-Task Medical Image Registration Challenge, Dataset and Evaluation in the Era of Deep Learning [J].
Hering, Alessa ;
Hansen, Lasse ;
Mok, Tony C. W. ;
Chung, Albert C. S. ;
Siebert, Hanna ;
Hager, Stephanie ;
Lange, Annkristin ;
Kuckertz, Sven ;
Heldmann, Stefan ;
Shao, Wei ;
Vesal, Sulaiman ;
Rusu, Mirabela ;
Sonn, Geoffrey ;
Estienne, Theo ;
Vakalopoulou, Maria ;
Han, Luyi ;
Huang, Yunzhi ;
Yap, Pew-Thian ;
Brudfors, Mikael ;
Balbastre, Yael ;
Joutard, Samuel ;
Modat, Marc ;
Lifshitz, Gal ;
Raviv, Dan ;
Lv, Jinxin ;
Li, Qiang ;
Jaouen, Vincent ;
Visvikis, Dimitris ;
Fourcade, Constance ;
Rubeaux, Mathieu ;
Pan, Wentao ;
Xu, Zhe ;
Jian, Bailiang ;
De Benetti, Francesca ;
Wodzinski, Marek ;
Gunnarsson, Niklas ;
Sjolund, Jens ;
Grzech, Daniel ;
Qiu, Huaqi ;
Li, Zeju ;
Thorley, Alexander ;
Duan, Jinming ;
Grossbroehmer, Christoph ;
Hoopes, Andrew ;
Reinertsen, Ingerid ;
Xiao, Yiming ;
Landman, Bennett ;
Huo, Yuankai ;
Murphy, Keelin ;
Lessmann, Nikolas .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2023, 42 (03) :697-712
[10]  
Horstmann T., 2022, Medical Imaging with Deep Learning