Design and Characterization of a <4-mW/Qubit 28-nm Cryo-CMOS Integrated Circuit for Full Control of a Superconducting Quantum Processor Unit Cell

被引:5
作者
Yoo, Juhwan [1 ]
Chen, Zijun [1 ]
Arute, Frank [1 ]
Montazeri, Shirin [1 ]
Szalay, Marco [1 ]
Erickson, Catherine [1 ]
Jeffrey, Evan [1 ]
Fatemi, Reza [1 ]
Giustina, Marissa [1 ]
Ansmann, Markus [1 ]
Lucero, Erik [1 ]
Kelly, Julian [1 ]
Bardin, Joseph C. [2 ]
机构
[1] Google Quantum AI, Goleta, CA 93111 USA
[2] Univ Massachusetts Amherst, Dept Elect & Comp Engn, Amherst, MA 01003 USA
关键词
Cryogenic CMOS (cryo-CMOS); cryogenic electronics; quantum computing; quantum control; GATES;
D O I
10.1109/JSSC.2023.3309317
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A universal fault-tolerant quantum computer will require large-scale control systems that can realize all the waveforms required to implement a gateset that is universal for quantum computing. Optimization of such a system, which must be precise and extensible, is an open research challenge. Here, we present a cryogenic quantum control integrated circuit (IC) that is able to control all the necessary degrees of freedom of a two-qubit subcircuit of a superconducting quantum processor. Specifically, the IC contains a pair of 4-8-GHz RF pulse generators for XY control, three baseband current gen-erators for qubit and coupler frequency control, and a digital controller that includes a sequencer for gate sequence playback. After motivating the architecture, we describe the circuit-level implementation details and present experimental results. Using standard benchmarking techniques, we show that the cryogenic CMOS (cryo-CMOS) IC is able to execute the components of a gateset that is universal for quantum computing while achieving single-qubit XY and Z average gate error rates of 0.17%- 0.36% and 0.14%-0.17%, respectively, as well as two-qubit average cross-entropy benchmarking (XEB) cycle error rates of 1.2%. These error rates, which were achieved while dissipating just 4 mW/qubit, are comparable to the measured error rates obtained using baseline room-temperature electronics.
引用
收藏
页码:3044 / 3059
页数:16
相关论文
共 60 条
[1]  
Acharya R., 2022, ARXIV
[2]   Suppressing quantum errors by scaling a surface code logical qubit [J].
Acharya, Rajeev ;
Aleiner, Igor ;
Allen, Richard ;
Andersen, Trond I. ;
Ansmann, Markus ;
Arute, Frank ;
Arya, Kunal ;
Asfaw, Abraham ;
Atalaya, Juan ;
Babbush, Ryan ;
Bacon, Dave ;
Bardin, Joseph C. ;
Basso, Joao ;
Bengtsson, Andreas ;
Boixo, Sergio ;
Bortoli, Gina ;
Bourassa, Alexandre ;
Bovaird, Jenna ;
Brill, Leon ;
Broughton, Michael ;
Buckley, Bob B. ;
Buell, David A. ;
Burger, Tim ;
Burkett, Brian ;
Bushnell, Nicholas ;
Chen, Yu ;
Chen, Zijun ;
Chiaro, Ben ;
Cogan, Josh ;
Collins, Roberto ;
Conner, Paul ;
Courtney, William ;
Crook, Alexander L. ;
Curtin, Ben ;
Debroy, Dripto M. ;
Barba, Alexander Del Toro ;
Demura, Sean ;
Dunsworth, Andrew ;
Eppens, Daniel ;
Erickson, Catherine ;
Faoro, Lara ;
Farhi, Edward ;
Fatemi, Reza ;
Burgos, Leslie Flores ;
Forati, Ebrahim ;
Fowler, Austin G. ;
Foxen, Brooks ;
Giang, William ;
Gidney, Craig ;
Gilboa, Dar .
NATURE, 2023, 614 (7949) :676-+
[3]  
[Anonymous], 2022, PT420-RM Cryocooler Capacity Curve
[4]   Quantum supremacy using a programmable superconducting processor [J].
Arute, Frank ;
Arya, Kunal ;
Babbush, Ryan ;
Bacon, Dave ;
Bardin, Joseph C. ;
Barends, Rami ;
Biswas, Rupak ;
Boixo, Sergio ;
Brandao, Fernando G. S. L. ;
Buell, David A. ;
Burkett, Brian ;
Chen, Yu ;
Chen, Zijun ;
Chiaro, Ben ;
Collins, Roberto ;
Courtney, William ;
Dunsworth, Andrew ;
Farhi, Edward ;
Foxen, Brooks ;
Fowler, Austin ;
Gidney, Craig ;
Giustina, Marissa ;
Graff, Rob ;
Guerin, Keith ;
Habegger, Steve ;
Harrigan, Matthew P. ;
Hartmann, Michael J. ;
Ho, Alan ;
Hoffmann, Markus ;
Huang, Trent ;
Humble, Travis S. ;
Isakov, Sergei V. ;
Jeffrey, Evan ;
Jiang, Zhang ;
Kafri, Dvir ;
Kechedzhi, Kostyantyn ;
Kelly, Julian ;
Klimov, Paul V. ;
Knysh, Sergey ;
Korotkov, Alexander ;
Kostritsa, Fedor ;
Landhuis, David ;
Lindmark, Mike ;
Lucero, Erik ;
Lyakh, Dmitry ;
Mandra, Salvatore ;
McClean, Jarrod R. ;
McEwen, Matthew ;
Megrant, Anthony ;
Mi, Xiao .
NATURE, 2019, 574 (7779) :505-+
[5]  
Bardin J., 2022, 2022 IEEE INT SOLIDS, V65, P422
[6]   Microwaves in Quantum Computing [J].
Bardin, Joseph C. ;
Slichter, Daniel H. ;
Reilly, David J. .
IEEE JOURNAL OF MICROWAVES, 2021, 1 (01) :403-427
[7]   Quantum Computing: An Introduction for Microwave Engineers [J].
Bardin, Joseph C. ;
Sank, Daniel ;
Naaman, Ofer ;
Jeffrey, Evan .
IEEE MICROWAVE MAGAZINE, 2020, 21 (08) :24-44
[8]   Design and Characterization of a 28-nm Bulk-CMOS Cryogenic Quantum Controller Dissipating Less Than 2 mW at 3 K [J].
Bardin, Joseph C. ;
Jeffrey, Evan ;
Lucero, Erik ;
Huang, Trent ;
Das, Sayan ;
Sank, Daniel Thomas ;
Naaman, Ofer ;
Megrant, Anthony Edward ;
Barends, Rami ;
White, Ted ;
Giustina, Marissa ;
Satzinger, Kevin J. ;
Arya, Kunal ;
Roushan, Pedram ;
Chiaro, Benjamin ;
Kelly, Julian ;
Chen, Zijun ;
Burkett, Brian ;
Chen, Yu ;
Dunsworth, Andrew ;
Fowler, Austin ;
Foxen, Brooks ;
Gidney, Craig ;
Graff, Rob ;
Klimov, Paul ;
Mutus, Josh ;
McEwen, Matthew J. ;
Neeley, Matthew ;
Neill, Charles J. ;
Quintana, Chris ;
Vainsencher, Amit ;
Neven, Hartmut ;
Martinis, John .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2019, 54 (11) :3043-3060
[9]  
Bardin JC, 2019, ISSCC DIG TECH PAP I, V62, P456, DOI 10.1109/ISSCC.2019.8662480
[10]   ELEMENTARY GATES FOR QUANTUM COMPUTATION [J].
BARENCO, A ;
BENNETT, CH ;
CLEVE, R ;
DIVINCENZO, DP ;
MARGOLUS, N ;
SHOR, P ;
SLEATOR, T ;
SMOLIN, JA ;
WEINFURTER, H .
PHYSICAL REVIEW A, 1995, 52 (05) :3457-3467