Lipschitz regularity for solutions of the parabolic p-Laplacian in the Heisenberg group

被引:3
作者
Capogna, Luca [1 ]
Zhong, Xiao [2 ]
Citti, Giovanna [3 ,4 ,5 ,6 ]
机构
[1] Smith Coll, Dept Math & Stat, Northampton, MA 01060 USA
[2] Univ Helsinki, Dept Math & Stat, Helsinki 00014, Finland
[3] Univ Bologna, Dipartimento Matemat, Piazza Porta S Donato 5, I-40126 Bologna, Italy
[4] Acad Lincei, Ctr Linceo interdisciplinare Beniamino Segre, Rome, Italy
[5] EHESS, CAMS, Paris, France
[6] GNAMPA INDAM, Rome, Italy
来源
ANNALES FENNICI MATHEMATICI | 2023年 / 48卷 / 02期
基金
欧盟地平线“2020”; 芬兰科学院;
关键词
Subelliptic p-Laplacian; parabolic gradient estimates; Heisenberg group; EQUATIONS;
D O I
10.54330/afm.131227
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove local Lipschitz regularity for weak solutions to a class of degenerate parabolic PDEs modeled on the parabolic p -Laplacian 2 n partial differential tu = X i=1 Xi(| backward difference 0u|p-2Xiu), in a cylinder 11 x R+, where 11 is domain in the Heisenberg group IfI(n, and 2 & LE; p & LE; 4. The result continues to hold in the more general setting of contact subRiemannian manifolds.
引用
收藏
页码:411 / 428
页数:18
相关论文
共 19 条
[1]   Harnack estimates for degenerate parabolic equations modeled on the subelliptic p-Laplacian [J].
Avelin, Benny ;
Capogna, Luca ;
Citti, Giovanna ;
Nystrom, Kaj .
ADVANCES IN MATHEMATICS, 2014, 257 :25-65
[2]  
CAPOGNA L., 2021, MATH ENG-US, V1, P1
[3]   Conformality and Q-harmonicity in sub-Riemannian manifolds [J].
Capogna, Luca ;
Citti, Giovanna ;
Le Donne, Enrico ;
Ottazzi, Alessandro .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 122 :67-124
[4]   Regularity for subelliptic PDE through uniform estimates in multi-scale geometries [J].
Capogna, Luca ;
Citti, Giovanna .
BULLETIN OF MATHEMATICAL SCIENCES, 2016, 6 (02) :173-230
[5]   HOLDER REGULARITY FOR THE GRADIENT OF SOLUTIONS OF CERTAIN SINGULAR PARABOLIC-SYSTEMS [J].
CHOE, HJ .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1991, 16 (11) :1709-1732
[6]   Smoothness of Lipschitz-continuous graphs with nonvanishing Levi curvature [J].
Citti, G ;
Lanconelli, E ;
Montanari, A .
ACTA MATHEMATICA, 2002, 188 (01) :87-128
[7]  
CITTI G., 2021, ARXIV211004377, P1
[8]  
DIBENEDETTO E, 1984, J REINE ANGEW MATH, V349, P83
[9]  
DiBenedetto E., 1993, Degenerate Parabolic Equations, DOI 10.1007/978-1-4612-0895-2
[10]   Differentiability of solutions for the non-degenerate p-Laplacian in the Heisenberg group [J].
Domokos, A .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 204 (02) :439-470