The temperature dependence of microbial community respiration is amplified by changes in species interactions

被引:43
作者
Garcia, Francisca C. [1 ,3 ]
Clegg, Tom [2 ]
O'Neill, Daniel Barrios [1 ]
Warfield, Ruth [1 ]
Pawar, Samraat [2 ]
Yvon-Durocher, Gabriel [1 ]
机构
[1] Univ Exeter, Environm & Sustainabil Inst, Penryn, England
[2] Imperial Coll London, Georgina Mace Ctr, Dept Life Sci, Silwood Pk Campus, Ascot, England
[3] King Abdullah Univ Sci & Technol, Red Sea Res Ctr, Thuwal, Saudi Arabia
基金
欧洲研究理事会;
关键词
HIGHER-ORDER INTERACTIONS; CARBON-CYCLE; SENSITIVITY; COMPETITION; DETERMINES;
D O I
10.1038/s41564-022-01283-w
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Respiratory release of CO2 by microorganisms is one of the main components of the global carbon cycle. However, there are large uncertainties regarding the effects of climate warming on the respiration of microbial communities, owing to a lack of mechanistic, empirically tested theory that incorporates dynamic species interactions. We present a general mathematical model which predicts that thermal sensitivity of microbial community respiration increases as species interactions change from competition to facilitation (for example, commensalism, cooperation and mutualism). This is because facilitation disproportionately increases positive feedback between the thermal sensitivities of species-level metabolic and biomass accumulation rates at warmer temperatures. We experimentally validate our theoretical predictions in a community of eight bacterial taxa and show that a shift from competition to facilitation, after a month of co-adaptation, caused a 60% increase in the thermal sensitivity of respiration relative to de novo assembled communities that had not co-adapted. We propose that rapid changes in species interactions can substantially change the temperature dependence of microbial community respiration, which should be accounted for in future climate-carbon cycle models. Accounting for species interactions is shown to be crucial for building more robust predictions of how climate change will affect the carbon cycle.
引用
收藏
页码:272 / 283
页数:12
相关论文
共 40 条
[1]   Linking the global carbon cycle to individual metabolism [J].
Allen, AP ;
Gillooly, JF ;
Brown, JH .
FUNCTIONAL ECOLOGY, 2005, 19 (02) :202-213
[2]   Temperature sensitivity of soil microbial communities: An application of macromolecular rate theory to microbial respiration [J].
Alster, Charlotte J. ;
Koyama, Akihiro ;
Johnson, Nels G. ;
Wallenstein, Matthew D. ;
von Fischer, Joseph C. .
JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2016, 121 (06) :1420-1433
[3]   Fifty important research questions in microbial ecology [J].
Antwis, Rachael E. ;
Griffiths, Sarah M. ;
Harrison, Xavier A. ;
Aranega-Bou, Paz ;
Arce, Andres ;
Bettridge, Aimee S. ;
Brailsford, Francesca L. ;
de Menezes, Alexandre ;
Devaynes, Andrew ;
Forbes, Kristian M. ;
Fry, Ellen L. ;
Goodhead, Ian ;
Haskell, Erin ;
Heys, Chloe ;
James, Chloe ;
Johnston, Sarah R. ;
Lewis, Gillian R. ;
Lewis, Zenobia ;
Macey, Michael C. ;
McCarthy, Alan ;
McDonald, James E. ;
Mejia-Florez, Nasmille L. ;
O'Brien, David ;
Orland, Chloe ;
Pautasso, Marco ;
Reid, William D. K. ;
Robinson, Heather A. ;
Wilson, Kenneth ;
Sutherland, William J. .
FEMS MICROBIOLOGY ECOLOGY, 2017, 93 (05)
[4]   The biomass distribution on Earth [J].
Bar-On, Yinon M. ;
Phillips, Rob ;
Milo, Ron .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (25) :6506-6511
[5]   Microbial contributions to climate change through carbon cycle feedbacks [J].
Bardgett, Richard D. ;
Freeman, Chris ;
Ostle, Nicholas J. .
ISME JOURNAL, 2008, 2 (08) :805-814
[6]   Cross-biome patterns in soil microbial respiration predictable from evolutionary theory on thermal adaptation [J].
Bradford, Mark A. ;
McCulley, Rebecca L. ;
Crowther, Thomas W. ;
Oldfield, Emily E. ;
Wood, Stephen A. ;
Fierer, Noah .
NATURE ECOLOGY & EVOLUTION, 2019, 3 (02) :223-+
[7]   The ecology of the microbiome: Networks, competition, and stability [J].
Coyte, Katharine Z. ;
Schluter, Jonas ;
Foster, Kevin R. .
SCIENCE, 2015, 350 (6261) :663-666
[8]   Quantifying global soil carbon losses in response to warming [J].
Crowther, T. W. ;
Todd-Brown, K. E. O. ;
Rowe, C. W. ;
Wieder, W. R. ;
Carey, J. C. ;
Machmuller, M. B. ;
Snoek, B. L. ;
Fang, S. ;
Zhou, G. ;
Allison, S. D. ;
Blair, J. M. ;
Bridgham, S. D. ;
Burton, A. J. ;
Carrillo, Y. ;
Reich, P. B. ;
Clark, J. S. ;
Classen, A. T. ;
Dijkstra, F. A. ;
Elberling, B. ;
Emmett, B. A. ;
Estiarte, M. ;
Frey, S. D. ;
Guo, J. ;
Harte, J. ;
Jiang, L. ;
Johnson, B. R. ;
Kroel-Dulay, G. ;
Larsen, K. S. ;
Laudon, H. ;
Lavallee, J. M. ;
Luo, Y. ;
Lupascu, M. ;
Ma, L. N. ;
Marhan, S. ;
Michelsen, A. ;
Mohan, J. ;
Niu, S. ;
Pendall, E. ;
Penuelas, J. ;
Pfeifer-Meister, L. ;
Poll, C. ;
Reinsch, S. ;
Reynolds, L. L. ;
Schmidt, I. K. ;
Sistla, S. ;
Sokol, N. W. ;
Templer, P. H. ;
Treseder, K. K. ;
Welker, J. M. ;
Bradford, M. A. .
NATURE, 2016, 540 (7631) :104-+
[9]   Temperature sensitivity of soil carbon decomposition and feedbacks to climate change [J].
Davidson, EA ;
Janssens, IA .
NATURE, 2006, 440 (7081) :165-173
[10]   A distinct seasonal pattern of the ratio of soil respiration to total ecosystem respiration in a spruce-dominated forest [J].
Davidson, EA ;
Richardson, AD ;
Savage, KE ;
Hollinger, DY .
GLOBAL CHANGE BIOLOGY, 2006, 12 (02) :230-239