Breast cancer;
Dynamic contrast-enhanced MRI;
Non-mass enhancement;
Deep learning;
BI-RADS;
LESIONS;
TUMOR;
MICROENVIRONMENT;
CRITERIA;
NONMASS;
D O I:
10.1007/s11604-023-01435-w
中图分类号:
R8 [特种医学];
R445 [影像诊断学];
学科分类号:
1002 ;
100207 ;
1009 ;
摘要:
PurposeTo evaluate the diagnostic performance of deep learning using the Residual Networks 50 (ResNet50) neural network constructed from different segmentations for distinguishing malignant and benign non-mass enhancement (NME) on breast magnetic resonance imaging (MRI) and conduct a comparison with radiologists with various levels of experience.Materials and methodsA total of 84 consecutive patients with 86 lesions (51 malignant, 35 benign) presenting NME on breast MRI were analyzed. Three radiologists with different levels of experience evaluated all examinations, based on the Breast Imaging-Reporting and Data System (BI-RADS) lexicon and categorization. For the deep learning method, one expert radiologist performed lesion annotation manually using the early phase of dynamic contrast-enhanced (DCE) MRI. Two segmentation methods were applied: a precise segmentation was carefully set to include only the enhancing area, and a rough segmentation covered the whole enhancing region, including the intervenient non-enhancing area. ResNet50 was implemented using the DCE MRI input. The diagnostic performance of the radiologists' readings and deep learning were then compared using receiver operating curve analysis.ResultsThe ResNet50 model from precise segmentation achieved diagnostic accuracy equivalent [area under the curve (AUC) = 0.91, 95% confidence interval (CI) 0.90, 0.93] to that of a highly experienced radiologist (AUC = 0.89, 95% CI 0.81, 0.96; p = 0.45). Even the model from rough segmentation showed diagnostic performance equivalent to a board-certified radiologist (AUC = 0.80, 95% CI 0.78, 0.82 vs. AUC = 0.79, 95% CI 0.70, 0.89, respectively). Both ResNet50 models from the precise and rough segmentation exceeded the diagnostic accuracy of a radiology resident (AUC = 0.64, 95% CI 0.52, 0.76).ConclusionThese findings suggest that the deep learning model from ResNet50 has the potential to ensure accuracy in the diagnosis of NME on breast MRI.
机构:
Xi An Jiao Tong Univ, Affiliated Hosp 2, Dept Radiol, Xi Wu Rd 157, Xian 710004, Shannxi, Peoples R ChinaXi An Jiao Tong Univ, Affiliated Hosp 2, Dept Radiol, Xi Wu Rd 157, Xian 710004, Shannxi, Peoples R China
Yang, Quan-Xin
Ji, Xing
论文数: 0引用数: 0
h-index: 0
机构:
Yanan Univ, Affiliated Hosp, Dept Radiol, Yanan, Shannxi, Peoples R ChinaXi An Jiao Tong Univ, Affiliated Hosp 2, Dept Radiol, Xi Wu Rd 157, Xian 710004, Shannxi, Peoples R China
Ji, Xing
Feng, Lin-Lin
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, Affiliated Hosp 2, Dept Radiol, Xi Wu Rd 157, Xian 710004, Shannxi, Peoples R ChinaXi An Jiao Tong Univ, Affiliated Hosp 2, Dept Radiol, Xi Wu Rd 157, Xian 710004, Shannxi, Peoples R China
Feng, Lin-Lin
Zheng, Long
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, Affiliated Hosp 2, Dept Nucl Med, Xian, Shannxi, Peoples R ChinaXi An Jiao Tong Univ, Affiliated Hosp 2, Dept Radiol, Xi Wu Rd 157, Xian 710004, Shannxi, Peoples R China
Zheng, Long
Zhou, Xiao-Qian
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, Affiliated Hosp 2, Dept Radiol, Xi Wu Rd 157, Xian 710004, Shannxi, Peoples R ChinaXi An Jiao Tong Univ, Affiliated Hosp 2, Dept Radiol, Xi Wu Rd 157, Xian 710004, Shannxi, Peoples R China
Zhou, Xiao-Qian
Wu, Qian
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, Med Coll, Dept Epidemiol, Xian, Shannxi, Peoples R ChinaXi An Jiao Tong Univ, Affiliated Hosp 2, Dept Radiol, Xi Wu Rd 157, Xian 710004, Shannxi, Peoples R China
Wu, Qian
Chen, Xin
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, Affiliated Hosp 2, Dept Radiol, Xi Wu Rd 157, Xian 710004, Shannxi, Peoples R ChinaXi An Jiao Tong Univ, Affiliated Hosp 2, Dept Radiol, Xi Wu Rd 157, Xian 710004, Shannxi, Peoples R China
机构:
Kameda Kyobashi Clin, Tokyo Sq Garden 4F,3-1-1 Kyobashi, Chuo City, Tokyo 1040031, Japan
Kameda Med Ctr, 929 Higashi Cho, Kamogawa City, Chiba 2960041, JapanKameda Kyobashi Clin, Tokyo Sq Garden 4F,3-1-1 Kyobashi, Chuo City, Tokyo 1040031, Japan
Machida, Youichi
Shimauchi, Akiko
论文数: 0引用数: 0
h-index: 0
机构:
Kameda Kyobashi Clin, Tokyo Sq Garden 4F,3-1-1 Kyobashi, Chuo City, Tokyo 1040031, Japan
Tohoku Univ Hosp, Sendai, Miyagi 9808574, JapanKameda Kyobashi Clin, Tokyo Sq Garden 4F,3-1-1 Kyobashi, Chuo City, Tokyo 1040031, Japan
Shimauchi, Akiko
Tozaki, Mitsuhiro
论文数: 0引用数: 0
h-index: 0
机构:
Kameda Kyobashi Clin, Tokyo Sq Garden 4F,3-1-1 Kyobashi, Chuo City, Tokyo 1040031, Japan
Sagara Hosp, Affiliated Breast Ctr, Kagoshima, Kagoshima 8920845, JapanKameda Kyobashi Clin, Tokyo Sq Garden 4F,3-1-1 Kyobashi, Chuo City, Tokyo 1040031, Japan
Tozaki, Mitsuhiro
Kuroki, Yoshifumi
论文数: 0引用数: 0
h-index: 0
机构:
Kameda Kyobashi Clin, Tokyo Sq Garden 4F,3-1-1 Kyobashi, Chuo City, Tokyo 1040031, JapanKameda Kyobashi Clin, Tokyo Sq Garden 4F,3-1-1 Kyobashi, Chuo City, Tokyo 1040031, Japan
Kuroki, Yoshifumi
Yoshida, Tamiko
论文数: 0引用数: 0
h-index: 0
机构:
Kameda Kyobashi Clin, Tokyo Sq Garden 4F,3-1-1 Kyobashi, Chuo City, Tokyo 1040031, JapanKameda Kyobashi Clin, Tokyo Sq Garden 4F,3-1-1 Kyobashi, Chuo City, Tokyo 1040031, Japan
Yoshida, Tamiko
Fukuma, Ei'suke
论文数: 0引用数: 0
h-index: 0
机构:
Kameda Med Ctr, 929 Higashi Cho, Kamogawa City, Chiba 2960041, JapanKameda Kyobashi Clin, Tokyo Sq Garden 4F,3-1-1 Kyobashi, Chuo City, Tokyo 1040031, Japan
机构:
CHA Univ, CHA Bundang Med Ctr, Dept Radiol, Yatap Dong 351, Seongnam Si 463712, Gyeonggi Do, South Korea
Natl Canc Ctr, Ctr Breast Canc, Div Radiol, Madu 1 Dong, Goyang Si, Gyeonggi Do, South KoreaCHA Univ, CHA Bundang Med Ctr, Dept Radiol, Yatap Dong 351, Seongnam Si 463712, Gyeonggi Do, South Korea
Kim, Yunju
Jung, Hae Kyoung
论文数: 0引用数: 0
h-index: 0
机构:
CHA Univ, CHA Bundang Med Ctr, Dept Radiol, Yatap Dong 351, Seongnam Si 463712, Gyeonggi Do, South KoreaCHA Univ, CHA Bundang Med Ctr, Dept Radiol, Yatap Dong 351, Seongnam Si 463712, Gyeonggi Do, South Korea
Jung, Hae Kyoung
Park, Ah Young
论文数: 0引用数: 0
h-index: 0
机构:
CHA Univ, CHA Bundang Med Ctr, Dept Radiol, Yatap Dong 351, Seongnam Si 463712, Gyeonggi Do, South KoreaCHA Univ, CHA Bundang Med Ctr, Dept Radiol, Yatap Dong 351, Seongnam Si 463712, Gyeonggi Do, South Korea
Park, Ah Young
Ko, Kyung Hee
论文数: 0引用数: 0
h-index: 0
机构:
CHA Univ, CHA Bundang Med Ctr, Dept Radiol, Yatap Dong 351, Seongnam Si 463712, Gyeonggi Do, South KoreaCHA Univ, CHA Bundang Med Ctr, Dept Radiol, Yatap Dong 351, Seongnam Si 463712, Gyeonggi Do, South Korea
Ko, Kyung Hee
Jang, Hyunkyung
论文数: 0引用数: 0
h-index: 0
机构:
CHA Univ, Dept Radiol, CHA Kangnam Med Ctr, Seoul, South KoreaCHA Univ, CHA Bundang Med Ctr, Dept Radiol, Yatap Dong 351, Seongnam Si 463712, Gyeonggi Do, South Korea
机构:
Chinese Peoples Liberat Army Gen Hosp, Med Ctr 1, Dept Radiol, Beijing, Peoples R ChinaChinese Peoples Liberat Army Gen Hosp, Med Ctr 1, Dept Radiol, Beijing, Peoples R China
Liu, Gang
Li, Ying
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Peoples Liberat Army Gen Hosp, Med Ctr 1, Dept Radiol, Beijing, Peoples R ChinaChinese Peoples Liberat Army Gen Hosp, Med Ctr 1, Dept Radiol, Beijing, Peoples R China
Li, Ying
Chen, Si-Lu
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Peoples Liberat Army Gen Hosp, Med Ctr 1, Dept Radiol, Beijing, Peoples R China
Chinese Peoples Liberat Army Gen Hosp, Med Ctr 7, Dept Radiol, Beijing, Peoples R ChinaChinese Peoples Liberat Army Gen Hosp, Med Ctr 1, Dept Radiol, Beijing, Peoples R China
Chen, Si-Lu
Chen, Qiao
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Peoples Liberat Army Gen Hosp, Med Ctr 1, Dept Radiol, Beijing, Peoples R ChinaChinese Peoples Liberat Army Gen Hosp, Med Ctr 1, Dept Radiol, Beijing, Peoples R China
机构:
Chinese Peoples Liberat Army Gen Hosp, Med Ctr 5, Dept Radiol, 8 Dongda St, Beijing 100071, Peoples R ChinaChinese Peoples Liberat Army Gen Hosp, Med Ctr 5, Dept Radiol, 8 Dongda St, Beijing 100071, Peoples R China
Zhou, Juan
Li, Mei
论文数: 0引用数: 0
h-index: 0
机构:
PLA Middle Mil Command Gen Hosp, Dept Radiol, Wuhan, Peoples R ChinaChinese Peoples Liberat Army Gen Hosp, Med Ctr 5, Dept Radiol, 8 Dongda St, Beijing 100071, Peoples R China
Li, Mei
Liu, Dongqing
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Peoples Liberat Army Gen Hosp, Med Ctr 5, Dept Radiol, 8 Dongda St, Beijing 100071, Peoples R ChinaChinese Peoples Liberat Army Gen Hosp, Med Ctr 5, Dept Radiol, 8 Dongda St, Beijing 100071, Peoples R China
Liu, Dongqing
Sheng, Fugeng
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Peoples Liberat Army Gen Hosp, Med Ctr 5, Dept Radiol, 8 Dongda St, Beijing 100071, Peoples R ChinaChinese Peoples Liberat Army Gen Hosp, Med Ctr 5, Dept Radiol, 8 Dongda St, Beijing 100071, Peoples R China
Sheng, Fugeng
Cai, Jianming
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Peoples Liberat Army Gen Hosp, Med Ctr 5, Dept Radiol, 8 Dongda St, Beijing 100071, Peoples R ChinaChinese Peoples Liberat Army Gen Hosp, Med Ctr 5, Dept Radiol, 8 Dongda St, Beijing 100071, Peoples R China
机构:
Fatih Sultan Mehmet Training & Res Hosp, Dept Radiol, TR-34758 Istanbul, TurkiyeFatih Sultan Mehmet Training & Res Hosp, Dept Radiol, TR-34758 Istanbul, Turkiye
Boy, Fatma Nur Soylu
Icten, Gul Esen
论文数: 0引用数: 0
h-index: 0
机构:
Acibadem Mehmet Ali Aydinlar Univ, Senol Res Inst, TR-34457 Istanbul, Turkiye
Acibadem Mehmet Ali Aydinlar Univ, Sch Med, Dept Radiol, TR-34457 Istanbul, TurkiyeFatih Sultan Mehmet Training & Res Hosp, Dept Radiol, TR-34758 Istanbul, Turkiye
Icten, Gul Esen
Kayadibi, Yasemin
论文数: 0引用数: 0
h-index: 0
机构:
Istanbul Univ Cerrahpasa, Cerrahpasa Med Fac, Dept Radiol, TR-34320 Istanbul, TurkiyeFatih Sultan Mehmet Training & Res Hosp, Dept Radiol, TR-34758 Istanbul, Turkiye
Kayadibi, Yasemin
Tasdelen, Iksan
论文数: 0引用数: 0
h-index: 0
机构:
Fatih Sultan Mehmet Training & Res Hosp, Dept Gen Surg, TR-34758 Istanbul, TurkiyeFatih Sultan Mehmet Training & Res Hosp, Dept Radiol, TR-34758 Istanbul, Turkiye
Tasdelen, Iksan
Alver, Dolunay
论文数: 0引用数: 0
h-index: 0
机构:
Fatih Sultan Mehmet Training & Res Hosp, Dept Radiol, TR-34758 Istanbul, TurkiyeFatih Sultan Mehmet Training & Res Hosp, Dept Radiol, TR-34758 Istanbul, Turkiye