ON THE ENUMERATION OF FINITE L-ALGEBRAS

被引:1
作者
Dietzel, C. [1 ]
Menchon, P. [2 ]
Vendramin, L. [1 ]
机构
[1] Vrije Univ Brussel, Dept Math & Data Sci, Pl Laan 2, B-1050 Brussels, Belgium
[2] Nicolaus Copernicus Univ Torun, Dept Log, Fosa Staromiejska 1a, PL-87100 Torun, Poland
关键词
SET-THEORETIC SOLUTIONS; BAXTER;
D O I
10.1090/mcom/3814
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We use Constraint Satisfaction Methods to construct and enumerate finite L-algebras up to isomorphism. These objects were recently introduced by Rump and appear in Garside theory, algebraic logic, and the study of the combinatorial Yang-Baxter equation. There are 377,322,225 isomorphism classes of L-algebras of size eight. The database constructed suggests the existence of bijections between certain classes of L-algebras and well-known combinatorial objects. We prove that Bell numbers enumerate isomorphism classes of finite linear L-algebras. We also prove that finite regular L-algebras are in bijective correspondence with infinite-dimensional Young diagrams.
引用
收藏
页码:1363 / 1381
页数:19
相关论文
共 20 条
[1]   ENUMERATION OF SET-THEORETIC SOLUTIONS TO THE YANG-BAXTER EQUATION [J].
Akgun, O. ;
Mereb, M. ;
Vendramin, L. .
MATHEMATICS OF COMPUTATION, 2022, 91 (335) :1469-1481
[2]   RIGHT-COMPLEMENTARY SEMIGROUPS - AXIOMS, POLYNOMIALS, CONGRUENCES [J].
BOSBACH, B .
MATHEMATISCHE ZEITSCHRIFT, 1972, 124 (04) :273-&
[3]  
Dehornoy P, 2015, EMS TRACTS MATH, V22, P1, DOI 10.4171/139
[4]   Set-theoretic solutions of the Yang-Baxter equation, RC-calculus, and Garside germs [J].
Dehornoy, Patrick .
ADVANCES IN MATHEMATICS, 2015, 282 :93-127
[5]  
Diego A., 1966, COLLECTION LOGIQUE M
[6]  
Herman L., 1975, Notre Dame Journal of Formal Logic, V16, P305, DOI 10.1305/ndjfl/1093891789
[7]   INTERPRETATION OF AF CSTAR-ALGEBRAS IN LUKASIEWICZ SENTENTIAL CALCULUS [J].
MUNDICI, D .
JOURNAL OF FUNCTIONAL ANALYSIS, 1986, 65 (01) :15-63
[8]   Automatically improving constraint models in Savile Row [J].
Nightingale, Peter ;
Akgun, Ozgur ;
Gent, Ian P. ;
Jefferson, Christopher ;
Miguel, Ian ;
Spracklen, Patrick .
ARTIFICIAL INTELLIGENCE, 2017, 251 :35-61
[9]   NUMBER OF PARTITIONS OF SET [J].
ROTA, GC .
AMERICAN MATHEMATICAL MONTHLY, 1964, 71 (05) :498-+
[10]   A decomposition theorem for square-free unitary solutions of the quantum Yang-Baxter equation [J].
Rump, W .
ADVANCES IN MATHEMATICS, 2005, 193 (01) :40-55