Robust quantile regression analysis for probabilistic modelling of S-N curves

被引:4
作者
Zou, Qingrong [1 ]
Zhao, Jianxi [1 ]
Wen, Jici [2 ,3 ]
机构
[1] Beijing Informat Sci & Technol Univ, Sch Appl Sci, Beijing 100192, Peoples R China
[2] Chinese Acad Sci, Inst Mech, State Key Lab Nonlinear Mech, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Sch Engn Sci, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
N curves; Fatigue life; Quantile regression; Fatigue design; FATIGUE LIFE PREDICTION; HIGH-CYCLE; CRACK INITIATION; STRENGTH; STEEL; REGIMES; GROWTH;
D O I
10.1016/j.ijfatigue.2022.107326
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The scatter in fatigue data is commonly characterized by probability distributions for constructing the probabilistic S-N curves. However, there is notable estimation bias under distribution misspecification. In this paper, we proposed a quantile regression framework for modeling S-N curves. The quantile regression model can be built directly on the experimental data without any distribution assumption. Extensive simulations and two experimental datasets are used to illustrate the usefulness of the proposed model. The results demonstrate that the quantile regression model is exempt from the problem of incorrectly specifying the potential fatigue life distribution and is robust to the non-constant scale problem.
引用
收藏
页数:14
相关论文
共 45 条
  • [1] [Anonymous], 2003, ISO 12107, P2
  • [2] SOLUTION OF AN OVERDETERMINED SYSTEM OF EQUATIONS IN L1 NORM [F4]
    BARRODALE, I
    ROBERTS, FDK
    [J]. COMMUNICATIONS OF THE ACM, 1974, 17 (06) : 319 - 320
  • [3] Properties of sufficiency and statistical tests
    Bartlett, MS
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1937, 160 (A901) : 0268 - 0282
  • [4] Basquin OH, 1910, P AM SOC TEST MAT, V10, P625
  • [5] Specimen length effect on parameter estimation in modelling fatigue strength by Weibull distribution
    Castillo, Enrique
    Lopez-Aenlle, Manuel
    Ramos, Antonio
    Fernandez-Catneli, Alfonso
    Kieselbach, Rolf
    Esslinger, Volker
    [J]. INTERNATIONAL JOURNAL OF FATIGUE, 2006, 28 (09) : 1047 - 1058
  • [6] Probabilistic physics-guided machine learning for fatigue data analysis
    Chen, Jie
    Liu, Yongming
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2021, 168
  • [7] Uncertainty quantification of fatigue S-N curves with sparse data using hierarchical Bayesian data augmentation
    Chen, Jie
    Liu, Siying
    Zhang, Wei
    Liu, Yongming
    [J]. INTERNATIONAL JOURNAL OF FATIGUE, 2020, 134
  • [8] Equivalent surface defect model for fatigue life prediction of steel reinforcing bars with pitting corrosion
    Chen, Jie
    Diao, Bo
    He, Jingjing
    Pang, Sen
    Guan, Xuefei
    [J]. INTERNATIONAL JOURNAL OF FATIGUE, 2018, 110 : 153 - 161
  • [9] Collins J.A., 1993, FAILURE MAT MECH DES
  • [10] Dolan T J, 1952, EFFECT PRIOR REPEATE