Improved team learning-based grey wolf optimizer for optimization tasks and engineering problems

被引:2
作者
Cui, Jingkai [1 ,2 ]
Liu, Tianyu [1 ,2 ]
Zhu, Mingchao [1 ]
Xu, Zhenbang [1 ,2 ]
机构
[1] Chinese Acad Sci, Changchun Inst Opt Fine Mech & Phys, Changchun 130033, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Meta-heuristics algorithms; Grey wolf optimizer; Benchmark functions optimization; Constrained problems optimization; DIFFERENTIAL EVOLUTION; KRILL HERD; ALGORITHM; METHODOLOGY;
D O I
10.1007/s11227-022-04930-5
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Optimization refers to finding the optimal solution to minimize or maximize the objective function. In the field of engineering, this plays an important role in designing parameters and reducing manufacturing costs. Meta-heuristics such as the grey wolf optimizer (GWO) are efficient ways to solve optimization problems. However, the GWO suffers from premature convergence or low accuracy. In this study, a team learning-based grey wolf optimizer (TLGWO), which consists of two strategies, is proposed to overcome these shortcomings. The neighbor learning strategy introduces the influence of neighbors to improve the local search ability, whereas the random learning strategy provides new search directions to enhance global exploration. Four engineering problems with constraints and 21 benchmark functions were employed to verify the competitiveness of the TLGWO. The test results were compared with three derivatives of the GWO and nine other state-of-the-art algorithms. Furthermore, the experimental results were analyzed using the Friedman and mean absolute error statistical tests. The results show that the proposed TLGWO can provide superior solutions to the compared algorithms on most optimization tasks and solve engineering problems with constraints.
引用
收藏
页码:10864 / 10914
页数:51
相关论文
共 50 条
  • [1] Improved team learning-based grey wolf optimizer for optimization tasks and engineering problems
    Jingkai Cui
    Tianyu Liu
    Mingchao Zhu
    Zhenbang Xu
    The Journal of Supercomputing, 2023, 79 : 10864 - 10914
  • [2] An improved grey wolf optimizer for solving engineering problems
    Nadimi-Shahraki, Mohammad H.
    Taghian, Shokooh
    Mirjalili, Seyedali
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 166 (166)
  • [3] Chaotic-based grey wolf optimizer for numerical and engineering optimization problems
    Lu, Chao
    Gao, Liang
    Li, Xinyu
    Hu, Chengyu
    Yan, Xuesong
    Gong, Wenyin
    MEMETIC COMPUTING, 2020, 12 (04) : 371 - 398
  • [4] Random walk grey wolf optimizer for constrained engineering optimization problems
    Gupta, Shubham
    Deep, Kusum
    COMPUTATIONAL INTELLIGENCE, 2018, 34 (04) : 1025 - 1045
  • [5] Improved Grey Wolf Optimizer Based on Opposition-Based Learning
    Gupta, Shubham
    Deep, Kusum
    SOFT COMPUTING FOR PROBLEM SOLVING, 2019, 817 : 327 - 338
  • [6] A hybrid learning-based genetic and grey-wolf optimizer for global optimization
    Jain, Ankush
    Nagar, Surendra
    Singh, Pramod Kumar
    Dhar, Joydip
    SOFT COMPUTING, 2023, 27 (08) : 4713 - 4759
  • [7] Symbiotic Learning Grey Wolf Optimizer for Engineering and Power Flow Optimization Problems
    Reddy, Aala Kalananda Vamsi Krishna
    Narayana, Komanapalli Venkata Lakshmi
    IEEE ACCESS, 2022, 10 : 95229 - 95280
  • [8] An Improved Grey Wolf Optimizer Based on Attention Mechanism for Solving Engineering Design Problems
    Zhang, Yuming
    Gao, Yuelin
    Huang, Liming
    Xie, Xiaofeng
    SYMMETRY-BASEL, 2025, 17 (01):
  • [9] A Novel Spherical Search Based Grey Wolf Optimizer for Optimization Problems
    Wang, Zhe
    Yang, Haichuan
    Wang, Ziqian
    Todo, Yuki
    Tang, Zheng
    Gao, Shangce
    PROCEEDINGS OF 2020 IEEE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND INFORMATION SYSTEMS (ICAIIS), 2020, : 38 - 43
  • [10] A memory-based Grey Wolf Optimizer for global optimization tasks
    Gupta, Shubham
    Deep, Kusum
    APPLIED SOFT COMPUTING, 2020, 93 (93)