Klein-Gordon-Maxwell Equations Driven by Mixed Local-Nonlocal Operators

被引:3
作者
Cangiotti, Nicolo [1 ]
Caponi, Maicol [2 ]
Maione, Alberto [3 ]
Vitillaro, Enzo [4 ]
机构
[1] Politecn Milan, Dept Math, Via Bonardi 9,Campus Leonardo, I-20133 Milan, Italy
[2] Univ Napoli Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, Via Cintia, I-80126 Naples, Italy
[3] Albert Ludwigs Univ Freiburg, Abt Angew Math, Hermann Herder Str 10, D-79104 Freiburg, Germany
[4] Univ Perugia, Dipartimento Matemat & Informat DMI, Via Luigi Vanvitelli 1, I-06123 Perugia, Italy
关键词
Nonlocal operators; Fractional operators; Variational methods; Critical points theory; Klein-Gordon-Maxwell system; GROUND-STATE SOLUTIONS; SOLITARY WAVES; SYSTEM; NONEXISTENCE; MULTIPLICITY; EXISTENCE; LIMIT;
D O I
10.1007/s00032-023-00387-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Classical results concerning Klein-Gordon-Maxwell type systems are shortly reviewed and generalized to the setting of mixed local-nonlocal operators, where the nonlocal one is allowed to be nonpositive definite according to a real parameter. In this paper, we provide a range of parameter values to ensure the existence of solitary (standing) waves, obtained as Mountain Pass critical points for the associated energy functionals in two different settings, by considering two different classes of potentials: constant potentials and continuous, bounded from below, and coercive potentials.
引用
收藏
页码:375 / 403
页数:29
相关论文
共 50 条
[41]   Dirichlet and Neumann problems for Klein-Gordon-Maxwell systems [J].
d'Avenia, P. ;
Pisani, L. ;
Siciliano, G. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (12) :E1985-E1995
[42]   Non-existence results for the coupled Klein-Gordon-Maxwell equations [J].
D'Aprile, T ;
Mugnai, D .
ADVANCED NONLINEAR STUDIES, 2004, 4 (03) :307-322
[43]   On critical Klein-Gordon-Maxwell systems with super-linear nonlinearities [J].
Tang, Xianhua ;
Wen, Lixi ;
Chen, Sitong .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 196
[44]   An improved result for Klein-Gordon-Maxwell systems with steep potential well [J].
Zhang, Qiongfen ;
Gan, Canlin ;
Xiao, Ting ;
Jia, Zhen .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (15) :11856-11862
[45]   SUBCRITICAL AND SUPERCRITICAL KLEIN-GORDON-MAXWELL EQUATIONS WITHOUT AMBROSETTI-RABINOWITZ CONDITION [J].
Cunha, Patricia L. .
DIFFERENTIAL AND INTEGRAL EQUATIONS, 2014, 27 (3-4) :387-399
[46]   Existence result for the critical Klein-Gordon-Maxwell system involving steep potential well [J].
Gan, Canlin ;
Wang, Weiwei .
AIMS MATHEMATICS, 2023, 8 (11) :26665-26681
[47]   Existence and multiplicity of solutions for Klein-Gordon-Maxwell systems with sign-changing potentials [J].
Wei, Chongqing ;
Li, Anran .
ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (1)
[48]   On the existence and multiplicity of solutions for nonlinear Klein-Gordon-Maxwell systems [J].
Wang, Lixia ;
Xiong, Chunlian ;
Zhao, Pingping .
ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2023, (19) :1-18
[49]   Variational methods for nonpositive mixed local-nonlocal operators [J].
Maione, Alberto ;
Mugnai, Dimitri ;
Vecchi, Eugenio .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2023, 26 (03) :943-961
[50]   Ground state solutions of a Klein-Gordon-Maxwell system for two scalar fields [J].
Han, Jongmin ;
Sohn, Juhee .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (09) :11112-11129