Klein-Gordon-Maxwell Equations Driven by Mixed Local-Nonlocal Operators

被引:3
作者
Cangiotti, Nicolo [1 ]
Caponi, Maicol [2 ]
Maione, Alberto [3 ]
Vitillaro, Enzo [4 ]
机构
[1] Politecn Milan, Dept Math, Via Bonardi 9,Campus Leonardo, I-20133 Milan, Italy
[2] Univ Napoli Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, Via Cintia, I-80126 Naples, Italy
[3] Albert Ludwigs Univ Freiburg, Abt Angew Math, Hermann Herder Str 10, D-79104 Freiburg, Germany
[4] Univ Perugia, Dipartimento Matemat & Informat DMI, Via Luigi Vanvitelli 1, I-06123 Perugia, Italy
关键词
Nonlocal operators; Fractional operators; Variational methods; Critical points theory; Klein-Gordon-Maxwell system; GROUND-STATE SOLUTIONS; SOLITARY WAVES; SYSTEM; NONEXISTENCE; MULTIPLICITY; EXISTENCE; LIMIT;
D O I
10.1007/s00032-023-00387-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Classical results concerning Klein-Gordon-Maxwell type systems are shortly reviewed and generalized to the setting of mixed local-nonlocal operators, where the nonlocal one is allowed to be nonpositive definite according to a real parameter. In this paper, we provide a range of parameter values to ensure the existence of solitary (standing) waves, obtained as Mountain Pass critical points for the associated energy functionals in two different settings, by considering two different classes of potentials: constant potentials and continuous, bounded from below, and coercive potentials.
引用
收藏
页码:375 / 403
页数:29
相关论文
共 45 条
[1]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[2]   Improved estimates and a limit case for the electrostatic Klein-Gordon-Maxwell system [J].
Azzollini, A. ;
Pisani, L. ;
Pomponio, A. .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2011, 141 :449-463
[3]  
Azzollini A, 2010, TOPOL METHOD NONL AN, V35, P33
[4]   ABSTRACT CRITICAL-POINT THEOREMS AND APPLICATIONS TO SOME NON-LINEAR PROBLEMS WITH STRONG RESONANCE AT INFINITY [J].
BARTOLO, P ;
BENCI, V ;
FORTUNATO, D .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1983, 7 (09) :981-1012
[5]   EXISTENCE AND MULTIPLICITY RESULTS FOR SOME SUPERLINEAR ELLIPTIC PROBLEMS ON R(N) [J].
BARTSCH, T ;
WANG, ZQ .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1995, 20 (9-10) :1725-1741
[6]   Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equations [J].
Benci, V ;
Fortunato, D .
REVIEWS IN MATHEMATICAL PHYSICS, 2002, 14 (04) :409-420
[7]   The nonlinear Klein-Gordon equation coupled with the Maxwell equations [J].
Benci, V ;
Fortunato, D .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 47 (09) :6065-6072
[8]   A Faber-Krahn inequality for mixed local and nonlocal operators [J].
Biagi, Stefano ;
Dipierro, Serena ;
Valdinoci, Enrico ;
Vecchi, Eugenio .
JOURNAL D ANALYSE MATHEMATIQUE, 2023, 150 (02) :405-448
[9]  
Biagi S, 2022, Arxiv, DOI arXiv:2209.07502
[10]   A Brezis-Oswald approach for mixed local and nonlocal operators [J].
Biagi, Stefano ;
Mugnai, Dimitri ;
Vecchi, Eugenio .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2024, 26 (02)