Klein-Gordon-Maxwell Equations Driven by Mixed Local-Nonlocal Operators

被引:3
作者
Cangiotti, Nicolo [1 ]
Caponi, Maicol [2 ]
Maione, Alberto [3 ]
Vitillaro, Enzo [4 ]
机构
[1] Politecn Milan, Dept Math, Via Bonardi 9,Campus Leonardo, I-20133 Milan, Italy
[2] Univ Napoli Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, Via Cintia, I-80126 Naples, Italy
[3] Albert Ludwigs Univ Freiburg, Abt Angew Math, Hermann Herder Str 10, D-79104 Freiburg, Germany
[4] Univ Perugia, Dipartimento Matemat & Informat DMI, Via Luigi Vanvitelli 1, I-06123 Perugia, Italy
关键词
Nonlocal operators; Fractional operators; Variational methods; Critical points theory; Klein-Gordon-Maxwell system; GROUND-STATE SOLUTIONS; SOLITARY WAVES; SYSTEM; NONEXISTENCE; MULTIPLICITY; EXISTENCE; LIMIT;
D O I
10.1007/s00032-023-00387-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Classical results concerning Klein-Gordon-Maxwell type systems are shortly reviewed and generalized to the setting of mixed local-nonlocal operators, where the nonlocal one is allowed to be nonpositive definite according to a real parameter. In this paper, we provide a range of parameter values to ensure the existence of solitary (standing) waves, obtained as Mountain Pass critical points for the associated energy functionals in two different settings, by considering two different classes of potentials: constant potentials and continuous, bounded from below, and coercive potentials.
引用
收藏
页码:375 / 403
页数:29
相关论文
共 50 条
  • [1] Klein–Gordon–Maxwell Equations Driven by Mixed Local–Nonlocal Operators
    Nicolò Cangiotti
    Maicol Caponi
    Alberto Maione
    Enzo Vitillaro
    Milan Journal of Mathematics, 2023, 91 : 375 - 403
  • [2] Generalized semi-local Klein-Gordon-Maxwell equations
    Sohn, Juhee
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2022, 29 (06):
  • [3] Schrödinger-Maxwell equations driven by mixed local-nonlocal operators
    Nicolò Cangiotti
    Maicol Caponi
    Alberto Maione
    Enzo Vitillaro
    Fractional Calculus and Applied Analysis, 2024, 27 : 677 - 705
  • [4] Schrödinger-Maxwell equations driven by mixed local-nonlocal operators
    Cangiotti, Nicolo
    Caponi, Maicol
    Maione, Alberto
    Vitillaro, Enzo
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2024, 27 (02) : 677 - 705
  • [5] Multiple solutions for superlinear Klein-Gordon-Maxwell equations
    Wu, Dong-Lun
    Lin, Hongxia
    MATHEMATISCHE NACHRICHTEN, 2020, 293 (09) : 1827 - 1835
  • [6] ON SEMILOCAL KLEIN-GORDON-MAXWELL EQUATIONS
    Han, Jongmin
    Sohn, Juhee
    Yo, Yeong Seok
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2021, 58 (05) : 1131 - 1145
  • [7] Multiple positive solutions for nonhomogeneous Klein-Gordon-Maxwell equations
    Shi, Hongxia
    Chen, Haibo
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 337 : 504 - 513
  • [8] Infinitely many solutions for a nonlinear Klein-Gordon-Maxwell System
    Li, Lin
    Tang, Chun-Lei
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 110 : 157 - 169
  • [9] Multiple solutions for nonhomogeneous Klein-Gordon-Maxwell equations on R3
    Chen, Shang-Jie
    Song, Shu-Zhi
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2015, 22 : 259 - 271
  • [10] KLEIN-GORDON-MAXWELL EQUATIONS IN HIGH DIMENSIONS
    Thizy, Pierre-Damien
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2015, 14 (03) : 1097 - 1125