Diffusion of the Tempone Spin Probe in Poly(Methyl Methacrylate) and Poly(D,L-Lactide) Plasticized with Sub- and Supercritical CO2

被引:1
作者
Popova, A. A. [1 ]
Golubeva, E. N. [1 ]
机构
[1] Lomonosov Moscow State Univ, Chem Fac, Moscow 119991, Russia
关键词
SC-CO2; SUB-CO2; PLA; PMMA; EPR; TEMPONE; impregnation; diffusion coefficient; spin-spin exchange; distribution constant; CARBON-DIOXIDE; GLASS-TRANSITION; POLYMER; FLUIDS; IMPREGNATION; TEMPERATURE; SIMULATION; BEHAVIOR;
D O I
10.1134/S1990793123070187
中图分类号
O64 [物理化学(理论化学)、化学物理学]; O56 [分子物理学、原子物理学];
学科分类号
070203 ; 070304 ; 081704 ; 1406 ;
摘要
The rotational and translational mobility coefficients of the TEMPONE spin probe in polylactide (PLA) and poly(methyl methacrylate) (PMMA) plasticized with supercritical (SC) and subcritical (SUB) CO2 were studied by EPR spectroscopy. The translational diffusion coefficients of TEMPONE in the PMMA-SC-CO2 system are three orders of magnitude lower than those in PLA-SC-CO2 and are on the order of 10(-14) and 10(-11) m(2)/s, respectively. The activation energy of TEMPONE rotation in PLA-SC-CO2 is 22 +/- 5 kJ/mol. When PLA is impregnated with the probe under subcritical conditions, desorption of the radical is predominant throughout the experiment. The spectrum of TEMPONE in PLA-SUB-CO2 is a superposition of a narrow signal similar to the spectrum of TEMPONE in PLA-SC-CO2 and a broad isotropic signal due to the magnetic concentration of TEMPONE probes in the surface layer of the polymer. A decrease in the local concentration with time is accompanied with the appearance of rotational anisotropy in the spectra of particles of the second type. The results obtained indicate the advantages of using SC-CO2 as a solvent for the impregnation of polymers, primarily due to high diffusion coefficients.
引用
收藏
页码:1540 / 1553
页数:14
相关论文
共 41 条
[1]  
Alekseev ES, 2020, RUSS CHEM REV+, V89, P1337, DOI [10.1070/RCR4932, 10.1070/RCR4932?locatt=label:RUSSIA]
[2]   Biodegradable Polymers as Drug Delivery Systems for Bone Regeneration [J].
Aoki, Kaoru ;
Saito, Naoto .
PHARMACEUTICS, 2020, 12 (02)
[3]   Orientation order and rotation mobility of nitroxide biradicals determined by quantitative simulation of EPR spectra [J].
Bogdanov, Alexey V. ;
Vorobiev, Andrey Kh. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (45) :31144-31153
[4]  
Buchachenko A. L., 1966, Russ. Chem. Bull, V15, P576, DOI [10.1007/BF00845931, DOI 10.1007/BF00845931]
[5]  
Buchachenko A. L., 1973, Stable Radicals. Electronic Structure, Reactivity and Application
[6]   EPR Diagnostics of D,L-Polylactide Porous Matrices Formed in Supercritical CO2 [J].
Chumakova, N. A. ;
Golubeva, E. N. ;
Ivanova, T. A. ;
Vorobieva, N. N. ;
Timashev, P. S. ;
Bagratashvili, V. N. .
RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B, 2018, 12 (08) :1255-1260
[7]  
Crank J., 1975, The Mathematics of Diffusion, DOI DOI 10.1016/0306-4549(77)90072-X
[8]  
Deb P., 2019, Pharmaceutical and Biomedical Applications of Polymers
[9]   Supercritical fluid impregnation of a biocompatible polymer for ophthalmic drug delivery [J].
Duarte, Ana Rita C. ;
Simplicio, Ana Luisa ;
Vega-Gonzalez, Arlette ;
Subra-Paternault, Pascale ;
Coimbra, Patricia ;
Gil, M. H. ;
de Sousa, Herminio C. ;
Duarte, Catarina M. M. .
JOURNAL OF SUPERCRITICAL FLUIDS, 2007, 42 (03) :373-377
[10]   Supercritical fluids as solvents for chemical and materials processing [J].
Eckert, CA ;
Knutson, BL ;
Debenedetti, PG .
NATURE, 1996, 383 (6598) :313-318