Enhanced CO oxidation performance over hierarchical flower-like Co3O4 based nanosheets via optimizing oxygen activation and CO chemisorption

被引:13
作者
Wang, Xinyang [1 ]
Li, Rui [1 ]
Luo, Xinyu [1 ]
Mu, Jincheng [2 ]
Peng, Jianbiao [1 ]
Yan, Guangxuan [1 ]
Wei, Pengkun [1 ]
Tian, Zhenbang [3 ]
Huang, Zuohua [3 ]
Cao, Zhiguo [1 ]
机构
[1] Henan Normal Univ, Henan Key Lab Environm Pollut Control, Key Lab Yellow River & Huai River Water Environm P, Sch Environm,Minist Educ, Xinxiang 453007, Henan, Peoples R China
[2] Guizhou Univ, Guizhou Karst Environm Ecosyst Observat & Res Stn, Minist Educ, Coll Resources & Environm Engn, Guiyang 550025, Peoples R China
[3] Henan Acad Sci, Inst Chem Co Ltd, Zhengzhou 450002, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
CO oxidation; Oxygen vacancies; CO chemisorption; In situ DRIFTS; CATALYZING N2O DECOMPOSITION; NO REDUCTION; CATALYTIC-OXIDATION; COBALT OXIDE; ADSORPTION; NANORODS; C3H6; AG;
D O I
10.1016/j.jcis.2023.10.069
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Enhancing low-temperature activity is a focus for carbon monoxide (CO) elimination by catalytic oxidation. In this work, the hierarchical flower-like silver (Ag) modified cobalt oxides (Co3O4) nanosheets were prepared by solvothermal method and applied into catalytic CO oxidation. The doped Ag species in the form of AgCoO2 induced the prolongated surface Co-O bond and weaker bond intensity. Consequently, the oxygen activation/ migration ability and redox capacity of Ag0.02Co were enhanced with more oxygen vacancies. The chemisorbed CO was preferentially converted to CO2 but not carbonates. The inhibited carbonates accumulation could avoid the coverage of active sites. According to Density functional theory (DFT) calculations, the electron transfer from AgCoO2 to Co3O4 promote electron donation ability of Co3O4 layer, benefiting for oxygen activation. Moreover, the longer Co-C and C-O bond length suggest the weakened chemisorption strength and higher active of CO molecule. The Ag modified Co3O4 exhibited more satisfactory activity at lower temperature. Typically, it realized 100% CO conversion at 90 degrees C, and displayed 6.3-fold higher reaction rate than pristine Co3O4 at 40 degrees C. More-over, the Ag0.02Co exhibited outstanding long-term stability and water resistance. In summary, the optimized oxygen activation, CO chemisorption and interfacial electron transfer synergistically boosted the CO oxidation activity on Ag modified Co3O4.
引用
收藏
页码:454 / 465
页数:12
相关论文
共 60 条
[21]   Preparation and Evaluation of Copper Manganese Oxide as a High-Efficiency Catalyst for CO Oxidation and NO Reduction by CO [J].
Liu, Tangkang ;
Yao, Yanyan ;
Wei, Longqing ;
Shi, Zhangfu ;
Han, Liying ;
Yuan, Haoxuan ;
Li, Bin ;
Dong, Lihui ;
Wang, Fan ;
Sun, Chuanzhi .
JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (23) :12757-12770
[22]   Surface oxygen Vacancies on Reduced Co3O4(100): Superoxide Formation and Ultra-Low-Temperature CO Oxidation [J].
Liu, Yun ;
Peng, Yuman ;
Naschitzki, Mathias ;
Gewinner, Sandy ;
Schoellkopf, Wieland ;
Kuhlenbeck, Helmut ;
Pentcheva, Rossitza ;
Roldan Cuenya, Beatriz .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (30) :16514-16520
[23]   Active Sites and Interfacial Reducibility of CuxO/CeO2 Catalysts Induced by Reducing Media and O2/H2 Activation [J].
Liu, Ze ;
Wang, Qi ;
Wu, Jinfang ;
Zhang, Heng ;
Liu, Yang ;
Zhang, Tiantian ;
Tian, Haoyuan ;
Zeng, Shanghong .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (30) :35804-35817
[24]   Promoting Effects of In2O3 on Co3O4 for CO Oxidation: Tuning O2 Activation and CO Adsorption Strength Simultaneously [J].
Lou, Yang ;
Ma, Jian ;
Cao, Xiaoming ;
Wang, Li ;
Dai, Qiguang ;
Zhao, Zhenyang ;
Cai, Yafeng ;
Zhan, Wangcheng ;
Guo, Yanglong ;
Hu, P. ;
Lu, Guanzhong ;
Guo, Yun .
ACS CATALYSIS, 2014, 4 (11) :4143-4152
[25]   Operando Insights into CO Oxidation on Cobalt Oxide Catalysts by NAP-XPS, FTIR, and XRD [J].
Lukashuk, Liliana ;
Yigit, Nevzat ;
Rameshan, Raffael ;
Kolar, Elisabeth ;
Teschner, Detre ;
Haevecker, Michael ;
Knop-Gericke, Axel ;
Schloegl, Robert ;
Foettinger, Karin ;
Rupprechter, Guenther .
ACS CATALYSIS, 2018, 8 (09) :8630-8641
[26]   Urchin-like Al-Doped Co3O4 Nanospheres Rich in Surface Oxygen Vacancies Enable Efficient Ammonia Electrosynthesis [J].
Lv, Xian-Wei ;
Liu, Yuping ;
Hao, Ran ;
Tian, Wenwen ;
Yuan, Zhong-Yong .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (15) :17502-17508
[27]   Indium-doped Co3O4 nanorods for catalytic oxidation of CO and C3H6 towards diesel exhaust [J].
Ma, Lei ;
Seo, Chang Yup ;
Chen, Xiaoyin ;
Sun, Kai ;
Schwank, Johannes W. .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2018, 222 :44-58
[28]   Theoretical perspective on CO oxidation over small cobalt oxide clusters [J].
Molavi, R. ;
Safaiee, R. ;
Sheikhi, M. H. ;
Hassani, N. .
CHEMICAL PHYSICS LETTERS, 2021, 767
[29]   Neighboring sp-Hybridized Carbon Participated Molecular OxygenActivation on the Interface of Sub-nanocluster CuO/Graphdiyne [J].
Pan, Chuanqi ;
Wang, Chenyang ;
Zhao, Xinya ;
Xu, Peiyan ;
Mao, Feihong ;
Yang, Ji ;
Zhu, Yuhua ;
Yu, Ruohan ;
Xiao, Shiyi ;
Fang, Yarong ;
Deng, Hongtao ;
Luo, Zhu ;
Wu, Jinsong ;
Li, Junbo ;
Liu, Shoujie ;
Xiao, Shengqiang ;
Zhang, Lizhi ;
Guo, Yanbing .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2022, 144 (11) :4942-4951
[30]   Theoretical insights into catalytic CO2 hydrogenation over single-atom (Fe or Ni) incorporated nitrogen-doped graphene [J].
Poldorn, Preeyaporn ;
Wongnongwa, Yutthana ;
Mudchimo, Tanabat ;
Jungsuttiwong, Siriporn .
JOURNAL OF CO2 UTILIZATION, 2021, 48