Suppressed High-Voltage Activation and Superior Electrochemical Performance of Co-Free Li-Rich Li2TiO3-LiNi0.5Mn0.5O2 Cathode Materials for Li-Ion Batteries

被引:2
作者
Jayamkondan, Yuvashri [1 ]
Nayak, Prasant Kumar [1 ]
机构
[1] SRM Inst Sci & Technol, Dept Chem, Mat Electrochem Res Lab, Kattankulathur 603203, Tamil Nadu, India
关键词
integrated layeredoxides; LTO-LNMO; cathodematerial; high rate; cycling stability; suppressed voltage decay; SPINEL PHASE-TRANSFORMATION; MN-RICH; STRUCTURAL STABILITY; LITHIUM BATTERIES; CYCLING STABILITY; ELECTRODES; NI; EVOLUTION; DECAY; TI;
D O I
10.1021/acssuschemeng.3c03209
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Although integrated Li- and Mn-rich layered oxides, composed of the active LiMO2 phase and the inactive Li2MnO3 phase, can provide a specific capacity of 250 mAh g(-1), there are a few challenges such as an irreversible capacity loss in the first cycle, capacity decay, and discharge voltage decay upon cycling, which hinder their practical applications. The layered-to-spinel transition resulting from the cycling of Li2MnO3 to above 4.5 V leads to a decrease in the average discharge voltage and capacity decay upon cycling. As Li2TiO3 (LTO) is a monoclinic phase similar to Li2MnO3 and the Ti-O bond is relatively stronger than the Mn-O bond, it may suppress the loss of oxygen and also the layered-to-spinel transition during high-voltage cycling. In this regard, it is interesting to substitute the Li2MnO3 component in the Li- and Mn-rich oxides with Li2TiO3 and to test their cycling stability performance as the cathode material in Li-ion batteries. Herewith, the electrochemical performance of xLi(2)TiO(3)center dot(1 - x) LiNi0.5Mn0.5O2 (x = 0.33, 0.50, 0.66) and xLi(2)MnO(3)center dot(1 - x) LiNi0.5Mn0.5O2 (x = 0.5) binary systems has been evaluated. It is found that 0.5Li(2)TiO(3)center dot 0.5LiNi(0.5)Mn(0.5)O(2) (LTO-LNMO 5050) can deliver an initial specific capacity of about 197.8 mAh g(-1) with 71% retention of capacity after 150 cycles upon cycling at a 0.1C rate. Alternately, the sample 0.5Li(2)MnO(3)center dot 0.5LiNi(0.5)Mn(0.5)O(2) (LMO-LNMO 5050) exhibits an initial specific capacity of 261 mAh g(-1) with only 46.5% retention of capacity after 150 cycles. Thus, this study clearly depicts the better electrochemical performance of LTO-LNMO 5050 over LMO-LNMO 5050 in terms of cycling stability. The better performance of LTO-LNMO 5050 can be due to the structural stabilization provided by the LTO component, which has been evidenced by the ex situ Raman and transmission electron microscopy (TEM) study.
引用
收藏
页码:14467 / 14480
页数:14
相关论文
共 45 条
[1]   Studies of Li and Mn-Rich Lix[MnNiCo]O2 Electrodes: Electrochemical Performance, Structure, and the Effect of the Aluminum Fluoride Coating [J].
Amalraj, Francis ;
Talianker, Michael ;
Markovsky, Boris ;
Burlaka, Luba ;
Leifer, Nicole ;
Goobes, Gil ;
Erickson, Evan M. ;
Haik, Ortal ;
Grinblat, Judith ;
Zinigrad, Ella ;
Aurbach, Doron ;
Lampert, Jordan K. ;
Shin, Ji-Yong ;
Schulz-Dobrick, Martin ;
Garsuch, Arnd .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (11) :A2220-A2233
[2]   Integrated Materials xLi2MnO3•(1-x) LiMn1/3Ni1/3Co1/3O2 (x=0.3, 0.5, 0.7) Synthesized [J].
Amalraj, Francis ;
Kovacheva, Daniela ;
Talianker, Michael ;
Zeiri, Leila ;
Grinblat, Judith ;
Leifer, Nicole ;
Goobes, Gil ;
Markovsky, Boris ;
Aurbach, Doron .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (10) :A1121-A1130
[3]   Improved Electrochemical Performance and Thermal Stability of Li-excess Li1.18Co0.15Ni0.15Mn0.52O2 Cathode Material by Li3PO4 Surface Coating [J].
Bian, Xiaofei ;
Fu, Qiang ;
Bie, Xiaofei ;
Yang, Peilei ;
Qiu, Hailong ;
Pang, Qiang ;
Chen, Gang ;
Du, Fei ;
Wei, Yingjin .
ELECTROCHIMICA ACTA, 2015, 174 :875-884
[4]   High-rate performance and suppressed voltage decay of Li and Mn-rich oxide cathode materials upon substitution of Mn with Co for Li-ion batteries [J].
Boopathi, Dhatshanamoorthy ;
Swain, Diptikanta ;
Nayak, Prasant Kumar .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2022, 927
[5]   Countering the Voltage Decay in High Capacity xLi2MnO3•(1-x)LiMO2 Electrodes (M=Mn, Ni, Co) for Li+-Ion Batteries [J].
Croy, Jason R. ;
Kim, Donghan ;
Balasubramanian, Mahalingam ;
Gallagher, Kevin ;
Kang, Sun-Ho ;
Thackeray, Michael M. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (06) :A781-A790
[6]   Suppression of Voltage Decay and Improvement in Electrochemical Performance by Zirconium Doping in Li-Rich Cathode Materials for Li-Ion Batteries [J].
Dahiya, P. P. ;
Ghanty, C. ;
Sahoo, K. ;
Basu, S. ;
Majumder, S. B. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (13) :A3114-A3124
[7]   Enhanced high-voltage cycling stability of Ni-rich cathode materials via the self-assembly of Mn-rich shells [J].
Dong, Xinyu ;
Yao, Junyi ;
Zhu, Wenchang ;
Huang, Xue ;
Kuai, Xiaoxiao ;
Tang, Jing ;
Li, Xiaolong ;
Dai, Shuyan ;
Shen, Liwei ;
Yang, Ruizhi ;
Gao, Lijun ;
Zhao, Jianqing .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (35) :20262-20273
[8]   Formation of the Spinel Phase in the Layered Composite Cathode Used in Li-Ion Batteries [J].
Gu, Meng ;
Belharouak, Ilias ;
Zheng, Jianming ;
Wu, Huiming ;
Xiao, Jie ;
Genc, Arda ;
Amine, Khalil ;
Thevuthasan, Suntharampillai ;
Baer, Donald R. ;
Zhang, Ji-Guang ;
Browning, Nigel D. ;
Liu, Jun ;
Wang, Chongmin .
ACS NANO, 2013, 7 (01) :760-767
[9]   Structural evolution of NM (Ni and Mn) lithium-rich layered material revealed by in-situ electrochemical Raman spectroscopic study [J].
Huang, Jing-Xin ;
Li, Bing ;
Liu, Bo ;
Liu, Bi-Ju ;
Zhao, Jin-Bao ;
Ren, Bin .
JOURNAL OF POWER SOURCES, 2016, 310 :85-90
[10]   Integrated Ni and Li-Rich Layered Oxide Cathode Materials for High Voltage Cycling in Rechargeable Li-Ion Batteries [J].
Jayamkondan, Yuvashri ;
Adelhelm, Philipp ;
Nayak, Prasant Kumar .
CHEMELECTROCHEM, 2022, 9 (21)