Optical line broadening mechanisms in rare-earth doped oxide nanocrystals

被引:2
作者
Fossati, A. [1 ]
Serrano, D. [1 ]
Liu, S. [1 ,2 ,3 ]
Tallaire, A. [1 ]
Ferrier, A. [1 ,4 ]
Goldner, P. [1 ]
机构
[1] PSL Univ, Inst Rech Chim Paris, Chim ParisTech, CNRS, F-75005 Paris, France
[2] Southern Univ Sci & Technol, Shenzhen Inst Quantum Sci & Engn, 1088 Xueyuan Ave, Shenzhen 518055, Peoples R China
[3] Southern Univ Sci & Technol, Dept Phys, 1088 Xueyuan Ave, Shenzhen 518055, Peoples R China
[4] Sorbonne Univ, Fac Sci & Ingn, UFR 933, F-75005 Paris, France
关键词
Nanoparticles; Rare-earth; Optical homogeneous linewidth; Quantum technologies;
D O I
10.1016/j.jlumin.2023.120050
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Rare-earth ions in nanocrystals are promising solid-state platforms for quantum light-matter interfaces, combining millisecond-long nuclear spin ������2 with kHz-range optical homogeneous linewidths. Coupled to optical micro-cavities these materials can enable scalable quantum processors, nanoscale quantum memories and single photon sources. Here, we report on optical dephasing in Eu3+:Y2O3 nanocrystals of 100 nm diameter through photon echo and spectral hole burning techniques as a function of temperature and magnetic field. We identify two-level systems (TLS) and electric noise as major line broadening mechanisms below 2 K and demonstrate that material-processing strategies such as high-power oxygen plasma can partially counteract these effects. Through modeling we show that these results are compatible with a reduction in the number of oxygen vacancy pairs in the nanocrystals by the oxygen plasma processing. These pairs, even at very low concentrations (hundreds of ppb), appear detrimental to optical coherence due to their ability to generate fluctuating electric fields.
引用
收藏
页数:6
相关论文
共 38 条
[1]   OPTICAL DEPHASING, HYPERFINE-STRUCTURE, AND HYPERFINE RELAXATION ASSOCIATED WITH THE 580.8-NM 7F0-5D0 TRANSITION OF EUROPIUM IN EU-3+-Y2O3 [J].
BABBITT, WR ;
LEZAMA, A ;
MOSSBERG, TW .
PHYSICAL REVIEW B, 1989, 39 (04) :1987-1992
[2]   Theory of microwave-optical conversion using rare-earth-ion dopants [J].
Barnett, Peter S. ;
Longdell, Jevon J. .
PHYSICAL REVIEW A, 2020, 102 (06)
[3]   On-chip coherent microwave-to-optical transduction mediated by ytterbium in YVO4 [J].
Bartholomew, John G. ;
Rochman, Jake ;
Xie, Tian ;
Kindem, Jonathan M. ;
Ruskuc, Andrei ;
Craiciu, Ioana ;
Lei, Mi ;
Faraon, Andrei .
NATURE COMMUNICATIONS, 2020, 11 (01)
[4]   Optical Line Width Broadening Mechanisms at the 10 kHz Level in Eu3+:Y2O3 Nanoparticles [J].
Bartholomew, John G. ;
Lima, Karmel de Oliveira ;
Ferrier, Alban ;
Goldner, Philippe .
NANO LETTERS, 2017, 17 (02) :778-787
[5]   Optical decoherence and spectral diffusion at 1.5 μm in Er3+:Y2SiO5 versus magnetic field, temperature, and Er3+ concentration [J].
Böttger, T ;
Thiel, CW ;
Sun, Y ;
Cone, RL .
PHYSICAL REVIEW B, 2006, 73 (07)
[6]   Dynamic control of Purcell enhanced emission of erbium ions in nanoparticles [J].
Casabone, Bernardo ;
Deshmukh, Chetan ;
Liu, Shuping ;
Serrano, Diana ;
Ferrier, Alban ;
Hummer, Thomas ;
Goldner, Philippe ;
Hunger, David ;
de Riedmatten, Hugues .
NATURE COMMUNICATIONS, 2021, 12 (01)
[7]   Cavity-enhanced spectroscopy of a few-ion ensemble in Eu3+:Y2O3 [J].
Casabone, Bernardo ;
Benedikter, Julia ;
Huemmer, Thomas ;
Oehl, Franziska ;
Lima, Karmel de Oliveira ;
Haensch, Theodor W. ;
Ferrier, Alban ;
Goldner, Philippe ;
de Riedmatten, Hugues ;
Hunger, David .
NEW JOURNAL OF PHYSICS, 2018, 20
[8]   Atomic Source of Single Photons in the Telecom Band [J].
Dibos, M. ;
Raha, M. ;
Phenicie, C. M. ;
Thompson, J. D. .
PHYSICAL REVIEW LETTERS, 2018, 120 (24)
[9]   SAMPLE-DEPENDENT OPTICAL DEPHASING IN BULK CRYSTALLINE SAMPLES OF Y2O3EU3+ [J].
FLINN, GP ;
JANG, KW ;
GANEM, J ;
JONES, ML ;
MELTZER, RS .
PHYSICAL REVIEW B, 1994, 49 (09) :5821-5827
[10]   A Frequency-Multiplexed Coherent Electro-optic Memory in Rare Earth Doped Nanoparticles [J].
Fossati, Alexandre ;
Liu, Shuping ;
Karlsson, Jenny ;
Ikesue, Akio ;
Tallaire, Alexandre ;
Ferrier, Alban ;
Serrano, Diana ;
Goldner, Philippe .
NANO LETTERS, 2020, 20 (10) :7087-7093