Effect of iron thicknesses on spin transport in a Fe/Au bilayer system

被引:0
作者
Briones, J. [1 ,2 ]
Weber, M. [1 ,2 ]
Stadtmueller, B. [1 ,2 ,3 ]
Schneider, H. C. [1 ,2 ]
Rethfeld, B. [1 ,2 ]
机构
[1] RPTU Kaiserslautern Landau, Dept Phys, Gottlieb Daimler Str 76, D-67663 Kaiserslautern, Germany
[2] RPTU Kaiserslautern Landau, OPTIMAS Res Ctr, Gottlieb Daimler Str 76, D-67663 Kaiserslautern, Germany
[3] Johannes Gutenberg Univ Mainz, Inst Phys, D-55128 Mainz, Germany
关键词
LAYERS;
D O I
10.1063/5.0148731
中图分类号
O59 [应用物理学];
学科分类号
摘要
This paper is concerned with a theoretical analysis of the behavior of optically excited spin currents in bilayer and multilayer systems of ferromagnetic and normal metals. As the propagation, control, and manipulation of the spin currents created in ferromagnets by femtosecond optical pulses is of particular interest, we examine the influence of different thicknesses of the constituent layers for the case of electrons excited several electronvolts above the Fermi level. Using a Monte-Carlo simulation framework for such highly excited electrons, we first examine the spatiotemporal characteristics of the spin current density driven in a Fe layer, where the absorption profile of the light pulse plays an important role. Further, we examine how the combination of light absorption profile, spin-dependent transmission probabilities, and iron layer thickness affects spin current density in a Fe/Au bilayer system. For high-energy electrons studied here, the interface and secondary electron generation have a small influence on spin transport in the bilayer system. However, we find that spin injection from one layer to another is most effective within a certain range of iron layer thicknesses.
引用
收藏
页数:7
相关论文
共 28 条
[1]   Femtosecond Spin Current Pulses Generated by the Nonthermal Spin-Dependent Seebeck Effect and Interacting with Ferromagnets in Spin Valves [J].
Alekhin, Alexandr ;
Razdolski, Ilya ;
Ilin, Nikita ;
Meyburg, Jan P. ;
Diesing, Detlef ;
Roddatis, Vladimir ;
Rungger, Ivan ;
Stamenova, Maria ;
Sanvito, Stefano ;
Bovensiepen, Uwe ;
Melnikov, Alexey .
PHYSICAL REVIEW LETTERS, 2017, 119 (01)
[2]   Superdiffusive Spin Transport as a Mechanism of Ultrafast Demagnetization [J].
Battiato, M. ;
Carva, K. ;
Oppeneer, P. M. .
PHYSICAL REVIEW LETTERS, 2010, 105 (02)
[3]   Hot electron lifetimes in metals probed by time-resolved two-photon photoemission [J].
Bauer, M. ;
Marienfeld, A. ;
Aeschlimann, M. .
PROGRESS IN SURFACE SCIENCE, 2015, 90 (03) :319-376
[4]   Hot-Electron-Induced Ultrafast Demagnetization in Co/Pt Multilayers [J].
Bergeard, N. ;
Hehn, M. ;
Mangin, S. ;
Lengaigne, G. ;
Montaigne, F. ;
Lalieu, M. L. M. ;
Koopmans, B. ;
Malinowski, G. .
PHYSICAL REVIEW LETTERS, 2016, 117 (14)
[5]   Validation of Grid Current Simulations Using the Particle-In-Cell Method for a Miniaturized Ion Thruster [J].
Binder, Tilman ;
Pfeiffer, Marcel ;
Fasoulas, Stefanos .
31ST INTERNATIONAL SYMPOSIUM ON RAREFIED GAS DYNAMICS (RGD31), 2019, 2132
[6]   Monte Carlo simulation of ultrafast nonequilibrium spin and charge transport in iron [J].
Briones, J. ;
Schneider, H. C. ;
Rethfeld, B. .
JOURNAL OF PHYSICS COMMUNICATIONS, 2022, 6 (03)
[7]   Spin-polarized currents in double and triple quantum dots driven by ac magnetic fields [J].
Busl, Maria ;
Platero, Gloria .
PHYSICAL REVIEW B, 2010, 82 (20)
[8]  
Carl Graham D. T., 2013, STOCHASTIC SIMULATIO
[9]  
Eckstein W., 1991, Computer Simulation of Ion-Solid Interaction
[10]  
Eschenlohr A, 2013, NAT MATER, V12, P332, DOI [10.1038/NMAT3546, 10.1038/nmat3546]