Exactly solvable lattice Hamiltonians and gravitational anomalies

被引:12
作者
Chen, Yu-An [1 ,2 ,3 ]
Hsin, Po-Shen [1 ,4 ]
机构
[1] CALTECH, Walter Burke Inst Theoret Phys, Pasadena, CA 91125 USA
[2] Univ Maryland, Condensed Matter Theory Ctr, Dept Phys, College Pk, MD 20742 USA
[3] Univ Maryland, Joint Quantum Inst, College Pk, MD 20742 USA
[4] Mani L Bhaumik Inst Theoret Phys, 475 Portola Plaza, Los Angeles, CA 90095 USA
来源
SCIPOST PHYSICS | 2023年 / 14卷 / 05期
关键词
CLASSIFICATION;
D O I
10.21468/SciPostPhys.14.5.089
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct infinitely many new exactly solvable local commuting projector lattice Hamiltonian models for general bosonic beyond group cohomology invertible topolog-ical phases of order two and four in any spacetime dimensions, whose boundaries are characterized by gravitational anomalies. Examples include the beyond group cohomol-ogy invertible phase without symmetry in (4+1)D that has an anomalous boundary Z2 topological order with fermionic particle and fermionic loop excitations that have mu-tual pi statistics. We argue that this construction gives a new non-trivial quantum cellular automaton (QCA) in (4+1)D of order two. We also present an explicit construction of gapped symmetric boundary state for the bosonic beyond group cohomology invertible phase with unitary Z2 symmetry in (4+1)D. We discuss new quantum phase transitions protected by different invertible phases across the transitions.
引用
收藏
页数:45
相关论文
共 73 条
  • [1] GRAVITATIONAL ANOMALIES
    ALVAREZGAUME, L
    WITTEN, E
    [J]. NUCLEAR PHYSICS B, 1984, 234 (02) : 269 - 330
  • [2] Theory of defects in Abelian topological states
    Barkeshli, Maissam
    Jian, Chao-Ming
    Qi, Xiao-Liang
    [J]. PHYSICAL REVIEW B, 2013, 88 (23)
  • [3] State sum constructions of spin-TFTs and string net constructions of fermionic phases of matter
    Bhardwaj, Lakshya
    Gaiotto, Davide
    Kapustin, Anton
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2017, (04):
  • [4] Braiding and gapped boundaries in fracton topological phases
    Bulmash, Daniel
    Iadecola, Thomas
    [J]. PHYSICAL REVIEW B, 2019, 99 (12)
  • [5] Chen X, 2022, Arxiv, DOI arXiv:2112.02137
  • [6] Symmetry protected topological orders and the group cohomology of their symmetry group
    Chen, Xie
    Gu, Zheng-Cheng
    Liu, Zheng-Xin
    Wen, Xiao-Gang
    [J]. PHYSICAL REVIEW B, 2013, 87 (15)
  • [7] Local unitary transformation, long-range quantum entanglement, wave function renormalization, and topological order
    Chen, Xie
    Gu, Zheng-Cheng
    Wen, Xiao-Gang
    [J]. PHYSICAL REVIEW B, 2010, 82 (15):
  • [8] Chen Y, UNPUB
  • [9] Chen YA, 2022, Arxiv, DOI arXiv:2106.05274
  • [10] Disentangling supercohomology symmetry-protected topological phases in three spatial dimensions
    Chen, Yu-An
    Ellison, Tyler D.
    Tantivasadakarn, Nathanan
    [J]. PHYSICAL REVIEW RESEARCH, 2021, 3 (01):