Results on the Approximate Controllability of Hilfer Type fractional Semilinear Control Systems

被引:12
作者
Vijayakumar, V. [1 ]
Malik, Muslim [2 ]
Shukla, Anurag [3 ]
机构
[1] Vellore Inst Technol, Sch Adv Sci, Dept Math, Vellore 632014, Tamil Nadu, India
[2] Indian Inst Technol, Sch Math & Stat Sci, Kamand 175005, Himachal Prades, India
[3] Rajkiya Engn Coll Kannauj, Dept Appl Sci, Kannauj 209732, Uttar Pradesh, India
关键词
Gronwall's inequality; Hilfer fractional differential equations; Controllability; Fixed point techniques; DIFFERENTIAL-INCLUSIONS; EVOLUTION; DELAY; EQUATIONS;
D O I
10.1007/s12346-023-00759-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The approximate controllability of Hilfer fractional semilinear control systems is the main focus of this study. Two distinct kinds of necessary requirements have been investigated. For the first set of results, we use Schauder's fixed point techniques, compactness of the relevant fractional operator, and concepts on fractional derivative to obtain them. Utilizing the Gronwall's inequality in the second set, we are able to demonstrate the main points without using the corresponding fractional operator's compactness or the fixed point method. Also provided is a case study for the validation of theoretical findings.
引用
收藏
页数:15
相关论文
共 44 条
[1]   A survey on Hadamard and Hilfer fractional differential equations: Analysis and stability [J].
Abbas, Said ;
Benchohra, Mouffak ;
Lazreg, Jamal-Eddine ;
Zhou, Yong .
CHAOS SOLITONS & FRACTALS, 2017, 102 :47-71
[2]   Hilfer fractional stochastic integro-differential equations [J].
Ahmed, Hamdy M. ;
El-Borai, Mahmoud M. .
APPLIED MATHEMATICS AND COMPUTATION, 2018, 331 :182-189
[3]   Analytical Study of Two Nonlinear Coupled Hybrid Systems Involving Generalized Hilfer Fractional Operators [J].
Almalahi, Mohammed A. ;
Bazighifan, Omar ;
Panchal, Satish K. ;
Askar, S. S. ;
Oros, Georgia Irina .
FRACTAL AND FRACTIONAL, 2021, 5 (04)
[4]   On the Theory of ψ-Hilfer Nonlocal Cauchy Problem [J].
Almalahi, Mohammed A. ;
Panchal, Satish K. .
JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2021, 14 (02) :159-175
[5]  
[Anonymous], 2006, N HOLLAND MATH STUDI
[6]   Controllability of nonlinear fractional dynamical systems [J].
Balachandran, K. ;
Park, J. Y. ;
Trujillo, J. J. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (04) :1919-1926
[7]  
Baleanu D., 2012, REGULARITY COMPLEXIT, DOI [10.1007/978-1-4614-0457-6, DOI 10.1007/978-1-4614-0457-6]
[8]   Basic Control Theory for Linear Fractional Differential Equations With Constant Coefficients [J].
Buedo-Fernandez, Sebastian ;
Nieto, Juan J. .
FRONTIERS IN PHYSICS, 2020, 8
[9]   Approximate controllability of semilinear Hilfer fractional differential inclusions with impulsive control inclusion conditions in Banach spaces [J].
Debbouche, Amar ;
Antonov, Valery .
CHAOS SOLITONS & FRACTALS, 2017, 102 :140-148
[10]   Controllability of fractional evolution nonlocal impulsive quasilinear delay integro-differential systems [J].
Debbouche, Amar ;
Baleanu, Dumitru .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (03) :1442-1450