The Yamabe flow on asymptotically Euclidean manifolds with nonpositive Yamabe constant

被引:0
作者
Carron, Gilles [1 ]
Chen, Eric [2 ]
Wang, Yi [3 ]
机构
[1] Nantes Univ, Nantes, France
[2] Univ Calif Berkeley, Berkeley, CA USA
[3] Johns Hopkins Univ, Baltimore, MD 21218 USA
关键词
Yamabe flow; Asymptotically flat manifolds; ADM mass; FLAT MANIFOLDS; CONVERGENCE; EXISTENCE; MASS;
D O I
10.1016/j.jfa.2022.109823
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the Yamabe flow on asymptotically flat manifolds with non-positive Yamabe constant Y < 0. Previous work by the second and third named authors [10] showed that while the Yamabe flow always converges in a global weighted sense when Y > 0, the flow must diverge when Y < 0. We show here in the Y < 0 case however that after suitable rescalings, the Yamabe flow starting from any asymptotically flat manifold must converge to the unique positive function which solves the Yamabe problem on a compactification of the original manifold.(c) 2022 Published by Elsevier Inc.
引用
收藏
页数:26
相关论文
共 29 条
[1]   The Yamabe problem on stratified spaces [J].
Akutagawa, Kazuo ;
Carron, Gilles ;
Mazzeo, Rafe .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2014, 24 (04) :1039-1079
[2]  
[Anonymous], 1983, ELLIPTIC PARTIAL DIF
[3]   Long-time existence of the edge Yamabe flow [J].
Bahuaud, Eric ;
Vertman, Boris .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2019, 71 (02) :651-688
[4]   THE MASS OF AN ASYMPTOTICALLY FLAT MANIFOLD [J].
BARTNIK, R .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1986, 39 (05) :661-693
[5]  
Brendle S, 2005, J DIFFER GEOM, V69, P217
[6]   Convergence of the Yamabe flow in dimension 6 and higher [J].
Brendle, Simon .
INVENTIONES MATHEMATICAE, 2007, 170 (03) :541-576
[7]  
CANTOR M, 1981, COMPOS MATH, V43, P317
[8]  
Carron G, 2021, Arxiv, DOI arXiv:2106.01799
[9]  
Chen ER, 2021, Arxiv, DOI arXiv:2102.07717
[10]  
Chen E, 2022, ANN SCUOLA NORM-SCI, V23, P15