Methods and Impact for Using Federated Learning to Collaborate on Clinical Research

被引:10
作者
Cheung, Alexander T. M. [1 ]
Nasir-Moin, Mustafa [1 ]
Kwon, Young Joon [1 ]
Guan, Jiahui [2 ]
Liu, Chris [1 ]
Jiang, Lavender [1 ,3 ]
Raimondo, Christian [1 ]
Chotai, Silky [4 ]
Chambless, Lola [4 ]
Ahmad, Hasan S. [5 ]
Chauhan, Daksh [5 ]
Yoon, Jang W. [5 ]
Hollon, Todd [6 ]
Buch, Vivek [7 ]
Kondziolka, Douglas [1 ]
Chen, Dinah [8 ]
Al-Aswad, Lama A. [8 ]
Aphinyanaphongs, Yindalon [9 ]
Oermann, Eric Karl [1 ,3 ,10 ]
机构
[1] NYU Langone Hlth, Dept Neurosurg, New York, NY USA
[2] nVidia, Santa Clara, CA USA
[3] NYU, Ctr Data Sci, New York, NY USA
[4] Vanderbilt Univ, Dept Neurosurg, Med Ctr, Nashville, TN USA
[5] Univ Penn, Dept Neurosurg, Perelman Sch Med, Philadelphia, PA USA
[6] Univ Michigan, Sch Med, Dept Neurosurg, Ann Arbor, MI USA
[7] Stanford Univ, Sch Med, Dept Neurosurg, Stanford, CA USA
[8] NYU Langone Hlth, Dept Ophthalmol, New York, NY USA
[9] NYU Langone Hlth, Dept Populat Hlth, New York, NY USA
[10] NYU Langone Hlth, Dept Radiol, New York, NY USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
Artificial intelligence; Federated learning; Intracranial hemorrhage; Machine learning;
D O I
10.1227/neu.0000000000002198
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
BACKGROUND:The development of accurate machine learning algorithms requires sufficient quantities of diverse data. This poses a challenge in health care because of the sensitive and siloed nature of biomedical information. Decentralized algorithms through federated learning (FL) avoid data aggregation by instead distributing algorithms to the data before centrally updating one global model.OBJECTIVE:To establish a multicenter collaboration and assess the feasibility of using FL to train machine learning models for intracranial hemorrhage (ICH) detection without sharing data between sites.METHODS:Five neurosurgery departments across the United States collaborated to establish a federated network and train a convolutional neural network to detect ICH on computed tomography scans. The global FL model was benchmarked against a standard, centrally trained model using a held-out data set and was compared against locally trained models using site data.RESULTS:A federated network of practicing neurosurgeon scientists was successfully initiated to train a model for predicting ICH. The FL model achieved an area under the ROC curve of 0.9487 (95% CI 0.9471-0.9503) when predicting all subtypes of ICH compared with a benchmark (non-FL) area under the ROC curve of 0.9753 (95% CI 0.9742-0.9764), although performance varied by subtype. The FL model consistently achieved top three performance when validated on any site's data, suggesting improved generalizability. A qualitative survey described the experience of participants in the federated network.CONCLUSION:This study demonstrates the feasibility of implementing a federated network for multi-institutional collaboration among clinicians and using FL to conduct machine learning research, thereby opening a new paradigm for neurosurgical collaboration.
引用
收藏
页码:431 / 438
页数:8
相关论文
共 26 条
[1]  
[Anonymous], RSNA Intracranial Hemorrhage Detection
[2]   The National Neurosurgery Quality and Outcomes Database and NeuroPoint Alliance: rationale, development, and implementation [J].
Asher, Anthony L. ;
McCormick, Paul C. ;
Selden, Nathan R. ;
Ghogawala, Zoher ;
McGirt, Matthew J. .
NEUROSURGICAL FOCUS, 2013, 34 (01)
[3]  
Bakas S, 2019, Arxiv, DOI arXiv:1811.02629
[4]  
Brendan M.H., 2016, arXiv, DOI [10.48550/arXiv.1602.05629, DOI 10.48550/ARXIV.1602.05629]
[5]   Big Data Defined: A Practical Review for Neurosurgeons [J].
Bydon, Mohamad ;
Schirmer, Clemens M. ;
Oermann, Eric K. ;
Kitagawa, Ryan S. ;
Pouratian, Nader ;
Davies, Jason ;
Sharan, Ashwini ;
Chambless, Lola B. .
WORLD NEUROSURGERY, 2020, 133 :E842-E849
[6]   Federated learning for predicting clinical outcomes in patients with COVID-19 [J].
Dayan, Ittai ;
Roth, Holger R. ;
Zhong, Aoxiao ;
Harouni, Ahmed ;
Gentili, Amilcare ;
Abidin, Anas Z. ;
Liu, Andrew ;
Costa, Anthony Beardsworth ;
Wood, Bradford J. ;
Tsai, Chien-Sung ;
Wang, Chih-Hung ;
Hsu, Chun-Nan ;
Lee, C. K. ;
Ruan, Peiying ;
Xu, Daguang ;
Wu, Dufan ;
Huang, Eddie ;
Kitamura, Felipe Campos ;
Lacey, Griffin ;
de Antonio Corradi, Gustavo Cesar ;
Nino, Gustavo ;
Shin, Hao-Hsin ;
Obinata, Hirofumi ;
Ren, Hui ;
Crane, Jason C. ;
Tetreault, Jesse ;
Guan, Jiahui ;
Garrett, John W. ;
Kaggie, Joshua D. ;
Park, Jung Gil ;
Dreyer, Keith ;
Juluru, Krishna ;
Kersten, Kristopher ;
Rockenbach, Marcio Aloisio Bezerra Cavalcanti ;
Linguraru, Marius George ;
Haider, Masoom A. ;
AbdelMaseeh, Meena ;
Rieke, Nicola ;
Damasceno, Pablo F. ;
Silva, Pedro Mario Cruz E. ;
Wang, Pochuan ;
Xu, Sheng ;
Kawano, Shuichi ;
Sriswasdi, Sira ;
Park, Soo Young ;
Grist, Thomas M. ;
Buch, Varun ;
Jantarabenjakul, Watsamon ;
Wang, Weichung ;
Tak, Won Young .
NATURE MEDICINE, 2021, 27 (10) :1735-+
[7]  
Flanders AE, 2020, RADIOL-ARTIF INTELL, V2, DOI [10.1148/ryai.2020190211, 10.1148/ryai.2020209002]
[8]  
Fung C, 2020, Arxiv, DOI [arXiv:1808.04866, 10.48550/arXiv.1808.04866]
[9]   Recursive partitioning analysis (RPA) of prognostic factors in three radiation therapy oncology group (RTOG) brain metastases trials [J].
Gaspar, L ;
Scott, C ;
Rotman, M ;
Asbell, S ;
Phillips, T ;
Wasserman, T ;
McKenna, WG ;
Byhardt, R .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 1997, 37 (04) :745-751
[10]  
Hsieh Kevin, 2019, ARXIV