DARN: Distance Attention Residual Network for Lightweight Remote-Sensing Image Superresolution

被引:4
作者
Wang, Qingjian [1 ]
Wang, Sen [1 ]
Chen, Mingfang [1 ]
Zhu, Yang [1 ]
机构
[1] Kunming Univ Sci & Technol, Fac Mech & Elect Engn, Kunming 650500, Peoples R China
基金
中国国家自然科学基金;
关键词
Convolution neural network; lightweight; remote sensing; single image superresolution (SISR);
D O I
10.1109/JSTARS.2022.3227509
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The application of single-image superresolution (SISR) in remote sensing is of great significance. Although the state-of-the-art convolution neural network (CNN)-based SISR methods have achieved excellent results, the large model and slow speed make it difficult to deploy in real remote sensing tasks. In this article, we propose a compact and efficient distance attention residual network (DARN) to achieve a better compromise between model accuracy and complexity. The distance attention residual connection block (DARCB), the core component of the DARN, uses multistage feature aggregation to learn more accurate feature representations. The main branch of the DARCB adopts a shallow residual block (SRB) to flexibly learn residual information to ensure the robustness of the model. We also propose a distance attention block (DAB) as a bridge between the main branch and the branch of the DARCB; the DAB can effectively alleviate the loss of detail features in the deep CNN extraction process. Experimental results on two remote sensing and five super-resolution benchmark datasets demonstrate that the DARN achieves a better compromise than existing methods in terms of performance and model complexity. In addition, the DARN achieves the optimal solution compared with the state-of-the-art lightweight remote sensing SISR method in terms of parameter amount, computation amount, and inference speed. Our code will be available at https://github.com/candygogogogo/DARN.
引用
收藏
页码:714 / 724
页数:11
相关论文
共 41 条
[1]   Fast, Accurate, and Lightweight Super-Resolution with Cascading Residual Network [J].
Ahn, Namhyuk ;
Kang, Byungkon ;
Sohn, Kyung-Ah .
COMPUTER VISION - ECCV 2018, PT X, 2018, 11214 :256-272
[2]   Low-Complexity Single-Image Super-Resolution based on Nonnegative Neighbor Embedding [J].
Bevilacqua, Marco ;
Roumy, Aline ;
Guillemot, Christine ;
Morel, Marie-Line Alberi .
PROCEEDINGS OF THE BRITISH MACHINE VISION CONFERENCE 2012, 2012,
[3]   Unified Framework for the Joint Super-Resolution and Registration of Multiangle Multi/Hyperspectral Remote Sensing Images [J].
Chen, Hang ;
Zhang, Hongyan ;
Du, Juan ;
Luo, Bin .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 :2369-2384
[4]   Remote Sensing Image Super-Resolution via Residual Aggregation and Split Attentional Fusion Network [J].
Chen, Long ;
Liu, Hui ;
Yang, Minhang ;
Qian, Yurong ;
Xiao, Zhengqing ;
Zhong, Xiwu .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 :9546-9556
[5]  
Chen XY, 2022, Arxiv, DOI arXiv:2205.04437
[6]   Second-order Attention Network for Single Image Super-Resolution [J].
Dai, Tao ;
Cai, Jianrui ;
Zhang, Yongbing ;
Xia, Shu-Tao ;
Zhang, Lei .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :11057-11066
[7]   Accelerating the Super-Resolution Convolutional Neural Network [J].
Dong, Chao ;
Loy, Chen Change ;
Tang, Xiaoou .
COMPUTER VISION - ECCV 2016, PT II, 2016, 9906 :391-407
[8]   Learning a Deep Convolutional Network for Image Super-Resolution [J].
Dong, Chao ;
Loy, Chen Change ;
He, Kaiming ;
Tang, Xiaoou .
COMPUTER VISION - ECCV 2014, PT IV, 2014, 8692 :184-199
[9]   Densely Connected Convolutional Networks [J].
Huang, Gao ;
Liu, Zhuang ;
van der Maaten, Laurens ;
Weinberger, Kilian Q. .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :2261-2269
[10]  
Huang JB, 2015, PROC CVPR IEEE, P5197, DOI 10.1109/CVPR.2015.7299156