Toric degenerations of partial flag varieties and combinatorial mutations of matching field polytopes

被引:1
作者
Clarke, Oliver [1 ]
Mohammadi, Fatemeh [2 ,3 ,4 ]
Zaffalon, Francesca [3 ]
机构
[1] Univ Edinburgh, Sch Math, Edinburgh, Scotland
[2] Katholieke Univ Leuven, Dept Comp Sci, Celestijnenlaan 200B, B-3001 Leuven, Belgium
[3] Katholieke Univ Leuven, Dept Math, Celestijnenlaan 200B, B-3001 Leuven, Belgium
[4] UiT The Arctic Univ Norway, Dept Math & Stat, N-9037 Tromso, Norway
基金
英国工程与自然科学研究理事会;
关键词
Toric degenerations; Grassmannians; Flag varieties; Combinatorial mutations; Ehrhart polynomial; SCHUBERT VARIETIES; IDEALS; GRASSMANNIANS;
D O I
10.1016/j.jalgebra.2023.09.026
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study toric degenerations arising from Grobner degen-erations or the tropicalization of partial flag varieties. We produce a new family of toric degenerations of partial flag vari-eties whose combinatorics are governed by matching fields and combinatorial mutations of polytopes. We provide an explicit description of the polytopes associated with the resulting toric varieties in terms of matching field polytopes. These polytopes encode the combinatorial data of monomial degenerations of Plucker forms for the Grassmannian. We give a description of matching field polytopes of flag varieties as Minkowski sums and show that all such polytopes are normal. The poly -topes we obtain are examples of Newton-Okounkov bodies for particular full-rank valuations for partial flag varieties. Fur-thermore, we study a certain explicitly-defined large family of matching field polytopes and prove that all polytopes in this family are connected by combinatorial mutations. Finally, we apply our methods to explicitly compute toric degenerations of small Grassmannians and flag varieties and obtain new families of toric degenerations. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:90 / 128
页数:39
相关论文
共 41 条
[1]   Minkowski Polynomials and Mutations [J].
Akhtar, Mohammad ;
Coates, Tom ;
Galkin, Sergey ;
Kasprzyk, Alexander M. .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2012, 8
[2]   Okounkov bodies and toric degenerations [J].
Anderson, Dave .
MATHEMATISCHE ANNALEN, 2013, 356 (03) :1183-1202
[3]  
Bossinger L., 2021, Int. Math. Res. Not., V2021, P7715
[4]   Families of Grobner Degenerations, Grassmannians and Universal Cluster Algebras [J].
Bossinger, Lara ;
Mohammadi, Fatemeh ;
Najera Chavez, Alfredo .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2021, 17
[5]   Toric degenerations of cluster varieties and cluster duality [J].
Bossinger, Lara ;
Frias-Medina, Bosco ;
Magee, Timothy ;
Najera Chavez, Alfredo .
COMPOSITIO MATHEMATICA, 2020, 156 (10) :2149-2206
[6]  
Bossinger Lara, 2017, Fields Inst. Commun., V80, P247
[7]   Tropical flag varieties [J].
Brandt, Madeline ;
Eur, Christopher ;
Zhang, Leon .
ADVANCES IN MATHEMATICS, 2021, 384
[8]  
Clarke O, MatchingFields, a package for Macaulay2
[9]  
Clarke O, 2022, Arxiv, DOI arXiv:2208.04521
[10]   Toric degenerations of flag varieties from matching field tableaux [J].
Clarke, Oliver ;
Mohammadi, Fatemeh .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2021, 225 (08)