Spatio-Temporal Pyramid Networks for Traffic Forecasting

被引:0
|
作者
Hu, Jia [1 ]
Wang, Chu [1 ]
Lin, Xianghong [1 ]
机构
[1] Northwest Normal Univ, Coll Comp Sci & Engn, Lanzhou, Peoples R China
来源
MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: RESEARCH TRACK, ECML PKDD 2023, PT I | 2023年 / 14169卷
基金
中国国家自然科学基金;
关键词
Traffic flow forecasting; Spatio-temporal data; Pyramid structure; NEURAL-NETWORKS;
D O I
10.1007/978-3-031-43412-9_20
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Traffic flow forecasting is an important part of smart city construction. Accurate traffic flow forecasting helps traffic management agencies to make timely adjustments, thus improving pedestrian travel efficiency and road utilization. However, this work is challenging due to the dynamic stochastic factors affecting the variation of traffic data and the spatially hidden behavior. Existing approaches generally use attention mechanism or graph neural networks to model correlation in temporal and spatial terms, and despite some progress in performance, they still ignore a number of practical situations: (1) Anomalous data due to traffic accidents or traffic congestion can affect the accuracy of modeling in the current moment and further create potential optimization problems for model training. (2) According to the directedness of the road, the hiding behavior between nodes should also be unidirectional and dynamic. In this paper, we propose a dynamic graph network with a pyramid structure, named PYNet, and use it for traffic flow forecasting tasks. Specifically, first we propose the Pyramid Constructor for transforming multivariate time series into a pyramid network with a multilevel structure, where the higher the level, the larger the range of time scales represented. Second, we perform Trend-Aware Attention top-down in the pyramid network, which gradually enables the lower-level time series to learn their long-term dependence in multiples, and effectively reduces the impact of outliers. Furthermore, to fully capture the hidden behavior in the spatial dimension, we learn an adaptive unidirectional graph and perform forward and backward diffusion convolution on the graph. Experimental results on two types of datasets show that PYNet outperforms the state-of-the-art baseline.
引用
收藏
页码:339 / 354
页数:16
相关论文
共 50 条
  • [1] Traffic Forecasting with Spatio-Temporal Graph Neural Networks
    Shah, Shehal
    Doshi, Prince
    Mangle, Shlok
    Tawde, Prachi
    Sawant, Vinaya
    ARTIFICIAL INTELLIGENCE AND KNOWLEDGE PROCESSING, AIKP 2024, 2025, 2228 : 183 - 197
  • [2] A Survey on Spatio-Temporal Graph Neural Networks for Traffic Forecasting
    Zhang, Can
    Lei, Minglong
    2023 23RD IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS, ICDMW 2023, 2023, : 1417 - 1423
  • [3] DMSTG: Dynamic Multiview Spatio-Temporal Networks for Traffic Forecasting
    Diao, Zulong
    Wang, Xin
    Zhang, Dafang
    Xie, Gaogang
    Chen, Jianguo
    Pei, Changhua
    Meng, Xuying
    Xie, Kun
    Zhang, Guangxing
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (06) : 6865 - 6880
  • [4] Spatio-Temporal Joint Graph Convolutional Networks for Traffic Forecasting
    Zheng, Chuanpan
    Fan, Xiaoliang
    Pan, Shirui
    Jin, Haibing
    Peng, Zhaopeng
    Wu, Zonghan
    Wang, Cheng
    Yu, Philip S.
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (01) : 372 - 385
  • [5] Efficient Spatio-Temporal Graph Neural Networks for Traffic Forecasting
    Lubarsky, Yackov
    Gaissinski, Alexei
    Kisilev, Pavel
    ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS, AIAI 2023, PT II, 2023, 676 : 109 - 120
  • [6] Hierarchical spatio-temporal graph ODE networks for traffic forecasting
    Xu, Tao
    Deng, Jiaming
    Ma, Ruolin
    Zhang, Zixiang
    Zhao, Yingying
    Zhao, Zhilong
    Zhang, Juntao
    INFORMATION FUSION, 2025, 113
  • [7] Efficient Spatio-Temporal Randomly Wired Neural Networks for Traffic Forecasting
    Song, Li
    Bao, Kainan
    Ke, Songyu
    Li, Chunyang
    Zhang, Junbo
    Zheng, Yu
    2022 IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS, ICDMW, 2022, : 1079 - 1086
  • [8] Spatio-Temporal Pivotal Graph Neural Networks for Traffic Flow Forecasting
    Kong, Weiyang
    Guo, Ziyu
    Liu, Yubao
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 8, 2024, : 8627 - 8635
  • [9] Spatio-temporal adaptive graph convolutional networks for traffic flow forecasting
    Ma, Qiwei
    Sun, Wei
    Gao, Junbo
    Ma, Pengwei
    Shi, Mengjie
    IET INTELLIGENT TRANSPORT SYSTEMS, 2023, 17 (04) : 691 - 703
  • [10] MLP for Spatio-Temporal Traffic Volume Forecasting
    Dimara, Asimina
    Triantafyllidis, Dimitrios
    Krinidis, Stelios
    Kitsikoudis, Konstantinos
    Ioannidis, Dimosthenis
    Valkouma, Efthalia
    Skarvelakis, Stilianos
    Antipas, Stavros
    Tzovaras, Dimitrios
    2021 IEEE INTERNATIONAL IOT, ELECTRONICS AND MECHATRONICS CONFERENCE (IEMTRONICS), 2021, : 764 - 770