Quantifying the Magnetic Interactions Governing Chiral Spin Textures Using Deep Neural Networks

被引:2
作者
Kong, Jian Feng [1 ]
Ren, Yuhua [3 ]
Tey, M. S. Nicholas [2 ]
Ho, Pin [2 ]
Khoo, Khoong Hong [1 ]
Chen, Xiaoye [2 ]
Soumyanarayanan, Anjan [3 ]
机构
[1] ASTAR, Inst High Performance Comp, Singapore 138632, Singapore
[2] ASTAR, Inst Mat Res & Engn, Singapore 138634, Singapore
[3] Natl Univ Singapore, Dept Phys, Singapore 117551, Singapore
关键词
magnetism; spintronics; chiral spin textures; magnetic interactions; neural network; machinelearning; magnetic microscopy; EXCHANGE; SKYRMIONS; SURFACES; DYNAMICS; DRIVEN;
D O I
10.1021/acsami.3c12655
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The interplay of magnetic interactions in chiral multilayer films gives rise to nanoscale topological spin textures that form attractive elements for next-generation computing. Quantifying these interactions requires several specialized, time-consuming, and resource-intensive experimental techniques. Imaging of ambient domain configurations presents a promising avenue for high-throughput extraction of parent magnetic interactions. Here, we present a machine learning (ML)-based approach to simultaneously determine the key magnetic interactions-symmetric exchange, chiral exchange, and anisotropy-governing the chiral domain phenomenology in multilayers, using a single binarized image of domain configurations. Our convolutional neural network model, trained and validated on over 10,000 domain images, achieved R-2 > 0.85 in predicting the parameters and independently learned the physical interdependencies between magnetic parameters. When applied to microscopy data acquired across samples, our model-predicted parameter trends are consistent with those of independent experimental measurements. These results establish ML-driven techniques as valuable, high-throughput complements to conventional determination of magnetic interactions and serve to accelerate materials and device development for nanoscale electronics.
引用
收藏
页码:1025 / 1032
页数:8
相关论文
共 51 条
  • [1] The 2020 skyrmionics roadmap
    Back, C.
    Cros, V
    Ebert, H.
    Everschor-Sitte, K.
    Fert, A.
    Garst, M.
    Ma, Tianping
    Mankovsky, S.
    Monchesky, T. L.
    Mostovoy, M.
    Nagaosa, N.
    Parkin, S. S. P.
    Pfleiderer, C.
    Reyren, N.
    Rosch, A.
    Taguchi, Y.
    Tokura, Y.
    von Bergmann, K.
    Zang, Jiadong
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2020, 53 (36)
  • [2] Chiral magnetic order at surfaces driven by inversion asymmetry
    Bode, M.
    Heide, M.
    von Bergmann, K.
    Ferriani, P.
    Heinze, S.
    Bihlmayer, G.
    Kubetzka, A.
    Pietzsch, O.
    Bluegel, S.
    Wiesendanger, R.
    [J]. NATURE, 2007, 447 (7141) : 190 - 193
  • [3] Quantifying symmetric exchange in ultrathin ferromagnetic films with chirality
    Boettcher, Tobias
    Suraj, T. S.
    Chen, Xiaoye
    Sinha, Banibrato
    Tan, Hui Ru
    Tan, Hang Khume
    Laskowski, Robert
    Hillebrands, Burkard
    Kostylev, Mikhail
    Khoo, Khoong Hong
    Soumyanarayanan, Anjan
    Pirro, Philipp
    [J]. PHYSICAL REVIEW B, 2023, 107 (09)
  • [4] Heisenberg Exchange and Dzyaloshinskii-Moriya Interaction in Ultrathin Pt(W)/CoFeB Single and Multilayers
    Boettcher, Tobias
    Lee, Kyujoon
    Heussner, Frank
    Jaiswal, Samridh
    Jakob, Gerhard
    Klaeui, Mathias
    Hillebrands, Burkard
    Braecher, Thomas
    Pirro, Philipp
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2021, 57 (07)
  • [5] Chiral symmetry breaking in magnetic thin films and multilayers -: art. no. 037203
    Bogdanov, AN
    Rössler, UK
    [J]. PHYSICAL REVIEW LETTERS, 2001, 87 (03) : 37203 - 1
  • [6] Potential implementation of reservoir computing models based on magnetic skyrmions
    Bourianoff, George
    Pinna, Daniele
    Sitte, Matthias
    Everschor-Sitte, Karin
    [J]. AIP ADVANCES, 2018, 8 (05)
  • [7] Machine learning and the physical sciences
    Carleo, Giuseppe
    Cirac, Ignacio
    Cranmer, Kyle
    Daudet, Laurent
    Schuld, Maria
    Tishby, Naftali
    Vogt-Maranto, Leslie
    Zdeborova, Lenka
    [J]. REVIEWS OF MODERN PHYSICS, 2019, 91 (04)
  • [8] Imaging and Tailoring the Chirality of Domain Walls in Magnetic Films
    Chen, Gong
    Schmid, Andreas K.
    [J]. ADVANCED MATERIALS, 2015, 27 (38) : 5738 - 5743
  • [9] Tailoring Zero-Field Magnetic Skyrmions in Chiral Multilayers by a Duet of Interlayer Exchange Couplings
    Chen, Xiaoye
    Tai, Tommy
    Tan, Hui Ru
    Tan, Hang Khume
    Lim, Royston
    Suraj, T. S.
    Ho, Pin
    Soumyanarayanan, Anjan
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (01)
  • [10] Thermal Evolution of Skyrmion Formation Mechanism in Chiral Multilayer Films
    Chen, Xiaoye
    Chue, Edwin
    Kong, Jian Feng
    Tan, Hui Ru
    Tan, Hang Khume
    Soumyanarayanan, Anjan
    [J]. PHYSICAL REVIEW APPLIED, 2022, 17 (04)