Multiresolution Self-Supervised Feature Integration via Attention Multiple Instance Learning for Histopathology Analysis

被引:1
作者
Tsiknakis, Nikos [1 ,2 ]
Tzoras, Evangelos [1 ]
Zerdes, Ioannis [1 ,3 ]
Manikis, Georgios C. [1 ,2 ]
Acs, Balazs [1 ,4 ]
Hartman, Johan [1 ,4 ]
Hatschek, Thomas [1 ,3 ]
Foukakis, Theodoros [1 ,3 ]
Marias, Kostas [2 ,5 ]
机构
[1] Karolinska Inst, Oncol Pathol, S-17177 Stockholm, Sweden
[2] Fdn Res & Technol Hellas, Inst Comp Sci, Iraklion 70013, Greece
[3] Karolinska Univ Hosp, Breast Canc Ctr, S-17177 Stockholm, Sweden
[4] Karolinska Univ Hosp, Dept Clin Pathol & Canc Diagnost, Stockholm, Sweden
[5] Hellen Mediterranean Univ, Dept Elect & Comp Engn, Iraklion 71410, Greece
来源
2023 45TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY, EMBC | 2023年
基金
瑞典研究理事会;
关键词
HISTOLOGICAL GRADE; BREAST-CANCER;
D O I
10.1109/EMBC40787.2023.10341061
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Digital histopathology image analysis of tumor tissue sections has seen great research interest for automating standard diagnostic tasks, but also for developing novel prognostic biomarkers. However, research has mainly been focused on developing uniresolution models, capturing either high-resolution cellular features or low-resolution tissue architectural features. In addition, in the patch-based weakly-supervised training of deep learning models, the features which represent the intratumoral heterogeneity are lost. In this study, we propose a multiresolution attention-based multiple instance learning framework that can capture cellular and contextual features from the whole tissue for predicting patient-level outcomes. Several basic mathematical operations were examined for integrating multiresolution features, i.e. addition, mean, multiplication and concatenation. The proposed multiplication-based multiresolution model performed the best (AUC=0.864), while all multiresolution models outperformed the uniresolution baseline models (AUC=0.669, 0.713) for breast-cancer grading. (Implementation: https://github.com/tsikup/multiresolution-clam)
引用
收藏
页数:4
相关论文
共 13 条
[1]   Emerging Properties in Self-Supervised Vision Transformers [J].
Caron, Mathilde ;
Touvron, Hugo ;
Misra, Ishan ;
Jegou, Herve ;
Mairal, Julien ;
Bojanowski, Piotr ;
Joulin, Armand .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :9630-9640
[2]  
Chen R.J., 2021, Learning Meaningful Representations of Life, NeurIPS 2021
[3]   Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning [J].
Coudray, Nicolas ;
Ocampo, Paolo Santiago ;
Sakellaropoulos, Theodore ;
Narula, Navneet ;
Snuderl, Matija ;
Fenyo, David ;
Moreira, Andre L. ;
Razavian, Narges ;
Tsirigos, Aristotelis .
NATURE MEDICINE, 2018, 24 (10) :1559-+
[4]  
Elston C W, 2002, Histopathology, V41, P154
[5]   Long term prognostic value of Nottingham histological grade and its components in early (pT1 N0M0) breast carcinoma [J].
Frkovic-Grazio, S ;
Bracko, M .
JOURNAL OF CLINICAL PATHOLOGY, 2002, 55 (02) :88-92
[6]   Neoadjuvant Trastuzumab, Pertuzumab, and Docetaxel vs Trastuzumab Emtansine in Patients With ERBB2-Positive Breast Cancer A Phase 2 Randomized Clinical Trial [J].
Hatschek, Thomas ;
Foukakis, Theodoros ;
Bjohle, Judith ;
Lekberg, Tobias ;
Fredholm, Hanna ;
Elinder, Ellinor ;
Bosch, Ana ;
Pekar, Gyula ;
Lindman, Henrik ;
Schiza, Aglaia ;
Einbeigi, Zakaria ;
Adra, Jamila ;
Andersson, Anne ;
Carlsson, Lena ;
Dreifaldt, Ann Charlotte ;
Isaksson-Friman, Erika ;
Agartz, Susanne ;
Azavedo, Edward ;
Gryback, Per ;
Hellstrom, Mats ;
Johansson, Hemming ;
Maes, Claudia ;
Zerdes, Ioannis ;
Hartman, Johan ;
Brandberg, Yvonne ;
Bergh, Jonas .
JAMA ONCOLOGY, 2021, 7 (09) :1360-1367
[7]   Predicting endometrial cancer subtypes and molecular features from histopathology images using multi-resolution deep learning models [J].
Hong, Runyu ;
Liu, Wenke ;
DeLair, Deborah ;
Razavian, Narges ;
Fenyo, David .
CELL REPORTS MEDICINE, 2021, 2 (09)
[8]   Data-efficient and weakly supervised computational pathology on whole-slide images [J].
Lu, Ming Y. ;
Williamson, Drew F. K. ;
Chen, Tiffany Y. ;
Chen, Richard J. ;
Barbieri, Matteo ;
Mahmood, Faisal .
NATURE BIOMEDICAL ENGINEERING, 2021, 5 (06) :555-+
[9]   A METHOD FOR NORMALIZING HISTOLOGY SLIDES FOR QUANTITATIVE ANALYSIS [J].
Macenko, Marc ;
Niethammer, Marc ;
Marron, J. S. ;
Borland, David ;
Woosley, John T. ;
Guan, Xiaojun ;
Schmitt, Charles ;
Thomas, Nancy E. .
2009 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, VOLS 1 AND 2, 2009, :1107-+
[10]  
Shao ZC, 2021, ADV NEUR IN