Toll-like receptor-targeted nanoparticles: A powerful combination for tumor immunotherapy

被引:9
作者
Zhi, Xin [1 ]
Yang, Peipei [1 ]
Xu, Yunxue [2 ]
Dai, Zhifei [2 ]
Yue, Xiuli [3 ]
Qian, Linxue [1 ]
机构
[1] Capital Med Univ, Beijing Friendship Hosp, Dept Ultrasound, 95 Yongan Rd, Beijing 100050, Peoples R China
[2] Peking Univ, Coll Future Technol, Natl Biomed Imaging Ctr, Dept Biomed Engn, 5 Yiheyuan Rd, Beijing 100871, Peoples R China
[3] Harbin Inst Technol, Sch Environm, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
Toll-like receptors; Immunotherapy; Nanoparticles; Cancer; MESOPOROUS SILICA NANOPARTICLES; ANTITUMOR IMMUNE-RESPONSES; LINKED TLR AGONISTS; DENDRITIC CELLS; STRUCTURAL BASIS; IN-VIVO; POLYMERIC NANOPARTICLES; ADJUVANT DELIVERY; HIGH EXPRESSION; POOR-PROGNOSIS;
D O I
10.1016/j.nantod.2023.102003
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Toll-like receptors (TLRs), found on antigen-presenting cells including macrophages and dendritic cells, are essential for identifying infections and initiating adaptive immunity. Therefore, among the many strategies for cancer immunotherapy, methods based on TLR agonists have been one of the most pursued directions. In addition to these immunologic activation functions, TLR agonists also contribute to reshaping immunosuppressive "cold" tumors into "hot" tumors. Despite their remarkable immunomodulatory properties, TLR agonists exhibit a low therapeutic index. Non-specific stimulation of various immune cells may produce excessive levels of inflammatory cytokines, leading to systemic side effects. The continuous development in nanotechnology has presented the possibility of innovative therapies to improve the efficacy and safety of TLR agonist-based immunotherapy. In this review, we describe the functions of TLRs in the tumor microenvironment, as well as, the pathways that activate immune responses, in addition to summarizing and discussing recent developments in nanotechnology for immunomodulation with TLR agonists, including platforms such as nanocapsules, micelles, liposomes, nanogels, and others. Nanotechnology can effectively improve the efficacy of TLR agonist-based immunotherapy, while playing a pivotal role in solving the limitations of the current treatment.
引用
收藏
页数:26
相关论文
共 281 条
[51]   Engineered T cells: the promise and challenges of cancer immunotherapy [J].
Fesnak, Andrew D. ;
June, Carl H. ;
Levine, Bruce L. .
NATURE REVIEWS CANCER, 2016, 16 (09) :566-581
[52]   Toll-like Receptors and the Control of Immunity [J].
Fitzgerald, Katherine A. ;
Kagan, Jonathan C. .
CELL, 2020, 180 (06) :1044-1066
[53]   Metabolic and epigenetic regulation of T-cell exhaustion [J].
Franco, Fabien ;
Jaccard, Alison ;
Romero, Pedro ;
Yu, Yi-Ru ;
Ho, Ping-Chih .
NATURE METABOLISM, 2020, 2 (10) :1001-1012
[54]   Trial Watch: experimental TLR7/TLR8 agonists for oncological indications [J].
Frega, Giorgio ;
Wu, Qi ;
Le Naour, Julie ;
Vacchelli, Erika ;
Galluzzi, Lorenzo ;
Kroemer, Guido ;
Kepp, Oliver .
ONCOIMMUNOLOGY, 2020, 9 (01)
[55]   Approaches to treat immune hot, altered and cold tumours with combination immunotherapies [J].
Galon, Jerome ;
Bruni, Daniela .
NATURE REVIEWS DRUG DISCOVERY, 2019, 18 (03) :197-218
[56]   Neoadjuvant PD-L1 plus CTLA-4 blockade in patients with cisplatin-ineligible operable high-risk urothelial carcinoma [J].
Gao, Jianjun ;
Navai, Neema ;
Alhalabi, Omar ;
Siefker-Radtke, Arlene ;
Campbell, Matthew T. ;
Tidwell, Rebecca Slack ;
Guo, Charles C. ;
Kamat, Ashish M. ;
Matin, Surena F. ;
Araujo, John C. ;
Shah, Amishi Y. ;
Msaouel, Pavlos ;
Corn, Paul ;
Wang, Jianbo ;
Papadopoulos, John N. ;
Yadav, Shalini S. ;
Blando, Jorge M. ;
Duan, Fei ;
Basu, Sreyashi ;
Liu, Wenbin ;
Shen, Yu ;
Zhang, Yuwei ;
Macaluso, Marc Daniel ;
Wang, Ying ;
Chen, Jianfeng ;
Zhang, Jianhua ;
Futreal, Andrew ;
Dinney, Colin ;
Allison, James P. ;
Goswami, Sangeeta ;
Sharma, Padmanee .
NATURE MEDICINE, 2020, 26 (12) :1845-1851
[57]   The safety evaluation of adjuvants during vaccine development: The AS04 experience [J].
Garcon, Nathalie ;
Segal, Lawrence ;
Tavares, Fernanda ;
Van Mechelen, Marcelle .
VACCINE, 2011, 29 (27) :4453-4459
[58]   Assembly and localization of Toll-like receptor signalling complexes [J].
Gay, Nicholas J. ;
Symmons, Martyn F. ;
Gangloff, Monique ;
Bryant, Clare E. .
NATURE REVIEWS IMMUNOLOGY, 2014, 14 (08) :546-558
[59]   Absence of Non-Canonical, Inhibitory MYD88 Splice Variants in B Cell Lymphomas Correlates With Sustained NF-κB Signaling [J].
Gloria, Yamel Cardona ;
Bernhart, Stephan H. ;
Fillinger, Sven ;
Wolz, Olaf-Oliver ;
Dickhoefer, Sabine ;
Admard, Jakob ;
Ossowski, Stephan ;
Nahnsen, Sven ;
Siebert, Reiner ;
Weber, Alexander N. R. .
FRONTIERS IN IMMUNOLOGY, 2021, 12
[60]   Synthetic Toll-Like Receptor 4 (TLR4) and TLR7 Ligands as Influenza Virus Vaccine Adjuvants Induce Rapid, Sustained, and Broadly Protective Responses [J].
Goff, Peter H. ;
Hayashi, Tomoko ;
Martnez-Gil, Luis ;
Corr, Maripat ;
Crain, Brian ;
Yao, Shiyin ;
Cottam, Howard B. ;
Chan, Michael ;
Ramos, Irene ;
Eggink, Dirk ;
Heshmati, Mitra ;
Krammer, Florian ;
Messer, Karen ;
Pu, Minya ;
Fernandez-Sesma, Ana ;
Palese, Peter ;
Carson, Dennis A. .
JOURNAL OF VIROLOGY, 2015, 89 (06) :3221-3235