Photobasic transition-metal complexes

被引:6
作者
Bysewski, Oliver [1 ,5 ]
Sittig, Maria [2 ,6 ]
Winter, Andreas [1 ]
Dietzek-Ivansic, Benjamin [2 ,3 ,4 ]
Schubert, Ulrich S. [1 ,3 ]
机构
[1] Friedrich Schiller Univ Jena, Lab Organ & Macromol Chem IOMC, Humboldtstr 10, D-07743 Jena, Germany
[2] Friedrich Schiller Univ Jena, Inst Phys Chem IPC, Helmholtzweg 4, D-07743 Jena, Germany
[3] Friedrich Schiller Univ Jena, Ctr Energy & Environm Chem Jena CEEC Jena, Philosophenweg 7a, D-07743 Jena, Germany
[4] Leibniz Inst Photon Technol Leibniz IPHT, Res Dept Funct Interfaces, Albert Einstein Str 9, D-07745 Jena, Germany
[5] Agilent Technol Deutschland GmbH, Hewlett Packard Str, D-76337 Waldbronn, Germany
[6] Bayer Weimar GmbH & Co KG, Dobereinerstr 20, D-99427 Weimar, Germany
关键词
Acid -base reaction; Excited -state lifetime; Photobase; pK a value; Transition -metal complexes; STATE PROTON-TRANSFER; COUPLED ELECTRON-TRANSFER; ACID-BASE PROPERTIES; EXCITED-STATE; RUTHENIUM(II) COMPLEXES; ELECTROCHEMICAL PROPERTIES; PHOTOPHYSICAL PROPERTIES; PH-JUMP; POLYPYRIDYL COMPLEXES; WATER OXIDATION;
D O I
10.1016/j.ccr.2023.215441
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Transition-metal complexes, which exhibit photobasic properties, are highly promising for chemical applications where the proton abstraction represents one key step. Photobases feature an increased basicity in the excited state and, in particular, molecules which offer this property upon excitation with visible light are highly attractive. This criterium is met by transition-metal complexes which bear a basic substituent. Due to a metal-to-ligand charge transfer (MLCT), electron density in the substituent is increased - it becomes more basic. In here, we would like to elaborate the concept of photobases at the example of transition-metal complexes and provide an overview of the up-to-now available literature.
引用
收藏
页数:22
相关论文
共 159 条
[91]   Fluorescence Aggregation-Caused Quenching versus Aggregation-Induced Emission: A Visual Teaching Technology for Undergraduate Chemistry Students [J].
Ma, Xiaofeng ;
Sun, Rui ;
Cheng, Jinghui ;
Liu, Jiaoyan ;
Gou, Fei ;
Xiang, Haifeng ;
Zhou, Xiangge .
JOURNAL OF CHEMICAL EDUCATION, 2016, 93 (02) :345-350
[92]   ESTIMATION OF PKA-ASTERISK IN THE 1ST EXCITED SINGLET-STATE - A PHYSICAL-CHEMISTRY EXPERIMENT THAT EXPLORES ACID-BASE PROPERTIES IN THE EXCITED-STATE [J].
MARCINIAK, B ;
KOZUBEK, H ;
PASZYC, S .
JOURNAL OF CHEMICAL EDUCATION, 1992, 69 (03) :247-249
[93]   Recent progress in development of photoacid generators [J].
Martin, Colin J. ;
Rapenne, Gwenael ;
Nakashima, Takuya ;
Kawai, Tsuyoshi .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS, 2018, 34 :41-51
[94]   Bimolecular Excited-State Proton-Coupled Electron Transfer within Encounter Complexes [J].
Martinez, Kristina ;
Koehne, Sydney M. ;
Benson, Kaitlyn ;
Paul, Jared J. ;
Schmehl, Russell H. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2023, 145 (08) :4462-4472
[95]  
MASSCHELEIN A, 1987, NEW J CHEM, V11, P329
[96]   The development of molecular water oxidation catalysts [J].
Matheu, Roc ;
Garrido-Barros, Pablo ;
Gil-Sepulcre, Marcos ;
Ertem, Mehmed Z. ;
Sala, Xavier ;
Gimbert-Surinach, Carolina ;
Llobet, Antoni .
NATURE REVIEWS CHEMISTRY, 2019, 3 (05) :331-341
[97]   The possible role of proton-coupled electron transfer (PCET) in water oxidation by photosystem II [J].
Meyer, Thomas J. ;
Huynh, My Hang V. ;
Thorp, H. Holden .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2007, 46 (28) :5284-5304
[98]   Time-resolved photoacoustics study of the ruthenium(II) bis(2,2′-bipyridine)(4,4′-dicarboxy-2,2′-bipyridine) complex [J].
Miksovská, J ;
Larsen, RW .
INORGANIC CHEMISTRY, 2004, 43 (13) :4051-4055
[99]   Steady-state and time-resolved emission studies of 6-methoxy quinoline [J].
Naik, LR ;
Kumar, HMS ;
Inamdar, SR ;
Math, NN .
SPECTROSCOPY LETTERS, 2005, 38 (4-5) :645-659
[100]   ACID-BASE BEHAVIOR IN THE GROUND AND EXCITED-STATES OF RUTHENIUM(II) COMPLEXES CONTAINING TETRAIMINES OR DICARBOXYBIPYRIDINES AS PROTONATABLE LIGANDS [J].
NAZEERUDDIN, MK ;
KALYANASUNDARAM, K .
INORGANIC CHEMISTRY, 1989, 28 (23) :4251-4259