Strongly interacting solitary waves for the fractional modified Korteweg-de Vries equation

被引:2
作者
Eychenne, Arnaud [1 ]
Valet, Frederic [1 ]
机构
[1] Univ Bergen, Dept Math, Allegaten 41, N-5007 Bergen, Norway
关键词
Modified fKdV; Strong interactions; Multi-soliton; Asymptotic behaviour; BENJAMIN-ONO EQUATIONS; LOCAL WELL-POSEDNESS; ENERGY SPACE; BLOW-UP; ASYMPTOTIC STABILITY; GROUND-STATES; GKDV; CONSTRUCTION; SOLITONS; EXISTENCE;
D O I
10.1016/j.jfa.2023.110145
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study one particular asymptotic behaviour of a solution of the fractional modified Korteweg-de Vries equation (also known as the dispersion generalised modified Benjamin-Ono equation): partial differential tu + partial differential x(-|D|alpha u + u3) = 0. The dipole solution is a solution behaving in large time as a sum of two strongly interacting solitary waves with different signs. We prove the existence of a dipole for fmKdV. A novelty of this article is the construction of accurate profiles. Moreover, to deal with the non-local operator |D|alpha, we refine some weighted commutator estimates. (c) 2023 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http:// creativecommons .org /licenses /by /4 .0/).
引用
收藏
页数:71
相关论文
共 52 条
[1]   Model equations for waves in stratified fluids [J].
Albert, JP ;
Bona, JL ;
Saut, JC .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1997, 453 (1961) :1233-1260
[2]  
Alinhac Serge, 2012, Operateurs pseudo-differentiels et theoreme de Nash-Moser
[3]   Existence of two-solitary waves with logarithmic distance for the nonlinear Klein-Gordon equation [J].
Aryan, Shrey .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2022, 24 (01)
[4]  
Bona JL, 2004, DISCRETE CONT DYN S, V11, P27
[5]   An extension problem related to the fractional Laplacian [J].
Caffarelli, Luis ;
Silvestre, Luis .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (7-9) :1245-1260
[6]  
Chow S.-N., 1982, Grundlehren der Mathematischen Wissenschaften, V251
[7]   CONSTRUCTION OF MULTIBUBBLE SOLUTIONS FOR THE CRITICAL GKDV EQUATION [J].
Combet, Vianney ;
Martel, Yvan .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2018, 50 (04) :3715-3790
[8]   Description and Classification of 2-Solitary Waves for Nonlinear Damped Klein-Gordon Equations [J].
Cote, Raphael ;
Martel, Yvan ;
Yuan, Xu ;
Zhao, Lifeng .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 388 (03) :1557-1601
[9]   Construction of multi-soliton solutions for the L2-supercritical gKdV and NLS equations [J].
Cote, Raphael ;
Martel, Yvan ;
Merle, Frank .
REVISTA MATEMATICA IBEROAMERICANA, 2011, 27 (01) :273-302
[10]   On the decay properties of solutions to a class of Schrodinger equations [J].
Dawson, L. ;
McGahagan, H. ;
Ponce, G. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (06) :2081-2090