Strongly interacting solitary waves for the fractional modified Korteweg-de Vries equation

被引:2
作者
Eychenne, Arnaud [1 ]
Valet, Frederic [1 ]
机构
[1] Univ Bergen, Dept Math, Allegaten 41, N-5007 Bergen, Norway
关键词
Modified fKdV; Strong interactions; Multi-soliton; Asymptotic behaviour; BENJAMIN-ONO EQUATIONS; LOCAL WELL-POSEDNESS; ENERGY SPACE; BLOW-UP; ASYMPTOTIC STABILITY; GROUND-STATES; GKDV; CONSTRUCTION; SOLITONS; EXISTENCE;
D O I
10.1016/j.jfa.2023.110145
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study one particular asymptotic behaviour of a solution of the fractional modified Korteweg-de Vries equation (also known as the dispersion generalised modified Benjamin-Ono equation): partial differential tu + partial differential x(-|D|alpha u + u3) = 0. The dipole solution is a solution behaving in large time as a sum of two strongly interacting solitary waves with different signs. We prove the existence of a dipole for fmKdV. A novelty of this article is the construction of accurate profiles. Moreover, to deal with the non-local operator |D|alpha, we refine some weighted commutator estimates. (c) 2023 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http:// creativecommons .org /licenses /by /4 .0/).
引用
收藏
页数:71
相关论文
共 52 条
  • [1] Model equations for waves in stratified fluids
    Albert, JP
    Bona, JL
    Saut, JC
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1997, 453 (1961): : 1233 - 1260
  • [2] Alinhac Serge, 2012, Operateurs pseudo-differentiels et theoreme de Nash-Moser
  • [3] Existence of two-solitary waves with logarithmic distance for the nonlinear Klein-Gordon equation
    Aryan, Shrey
    [J]. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2022, 24 (01)
  • [4] Bona JL, 2004, DISCRETE CONT DYN S, V11, P27
  • [5] An extension problem related to the fractional Laplacian
    Caffarelli, Luis
    Silvestre, Luis
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (7-9) : 1245 - 1260
  • [6] Chow S.-N., 1982, Grundlehren der Mathematischen Wissenschaften, V251
  • [7] CONSTRUCTION OF MULTIBUBBLE SOLUTIONS FOR THE CRITICAL GKDV EQUATION
    Combet, Vianney
    Martel, Yvan
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2018, 50 (04) : 3715 - 3790
  • [8] Description and Classification of 2-Solitary Waves for Nonlinear Damped Klein-Gordon Equations
    Cote, Raphael
    Martel, Yvan
    Yuan, Xu
    Zhao, Lifeng
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 388 (03) : 1557 - 1601
  • [9] Construction of multi-soliton solutions for the L2-supercritical gKdV and NLS equations
    Cote, Raphael
    Martel, Yvan
    Merle, Frank
    [J]. REVISTA MATEMATICA IBEROAMERICANA, 2011, 27 (01) : 273 - 302
  • [10] On the decay properties of solutions to a class of Schrodinger equations
    Dawson, L.
    McGahagan, H.
    Ponce, G.
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (06) : 2081 - 2090