W-Net: Convolutional neural network for segmenting remote sensing images by dual path semantics

被引:2
|
作者
Liu, Guangjie [1 ]
Wang, Qi [1 ]
Zhu, Jinlong [1 ]
Hong, Haotong [2 ]
机构
[1] Changchun Normal Univ, Coll Comp Sci & Technol, Changchun, Jilin, Peoples R China
[2] FAW Mold Mfg Co Ltd, Changchun, Jilin, Peoples R China
来源
PLOS ONE | 2023年 / 18卷 / 07期
关键词
DEEP; SEGMENTATION; CONNECTIONS; FEATURES;
D O I
10.1371/journal.pone.0288311
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In the latest research progress, deep neural networks have been revolutionized by frameworks to extract image features more accurately. In this study, we focus on an attention model that can be useful in deep neural networks and propose a simple but strong feature extraction deep network architecture, W-Net. The architecture of our W-Net network has two mutually independent path structures, and it is designed with the following advantages. (1) There are two independent effective paths in our proposed network structure, and the two paths capture more contextual information from different scales in different ways. (2) The two paths acquire different feature images, and in the upsampling approach, we use bilinear interpolation thus reducing the feature map distortion phenomenon and integrating the different images processed. (3) The feature image processing is at a bottleneck, and a hierarchical attention module is constructed at the bottleneck by reclassifying after the channel attention module and the spatial attention module, resulting in more efficient and accurate processing of feature images. During the experiment, we also tested iSAID, a massively high spatial resolution remote sensing image dataset, with further experimental data comparison to demonstrate the generality of our method for remote sensor image segmentation.
引用
收藏
页数:16
相关论文
empty
未找到相关数据