Optimal Identification for Dynamic PV Cell Parameter Based on a Data-Extension-Driven Method

被引:2
作者
Long, Yun [1 ]
Lu, Youfei [1 ]
Wang, Li [1 ]
Bao, Tao [2 ]
Chen, Chen [3 ]
机构
[1] Guangzhou Power Supply Bur Guangdong Power Grid Co, Guangzhou, Peoples R China
[2] Digital Grid Res Inst China Southern Power Grid, Guangzhou 510000, Peoples R China
[3] Xi An Jiao Tong Univ, Sch Elect Engn, Xian, Peoples R China
关键词
PARTICLE SWARM OPTIMIZATION; PHOTOVOLTAIC MODELS; SOLAR-CELLS; ALGORITHM; PREDICTION; EXTRACTION; SINGLE;
D O I
10.1155/2023/6156333
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Affected by environmental factors, equipment aging, operating status, etc., the parameters of photovoltaic (PV) models will deviate from the original setting parameters. In order to accurately identify the dynamic parameters of photovoltaics under the general simulation model, traditional parameter identification methods mainly use heuristic intelligent optimization algorithms for direct solution. Due to the limited data collected and the strong randomness of the algorithm, it is easy to make the identification accuracy and stability of photovoltaic parameters difficult to meet the requirements. To this end, this paper proposes an optimal identification method for PV dynamic parameters driven by data expansion. Firstly, the PV external characteristic data is fitted and generalized, which used the generalized regression neural network (GRNN). Then, the extended high-quality data can be used for dynamic parameter identification for PV cell. To confirm the performance of the proposed algorithm in this paper, this paper expands based on the actual external characteristic data of different proportions and uses the general PV simulation model to conduct comparative tests on various commonly used algorithms. The case studies under different scenarios show that the proposed algorithm can provide a more reliable and well-represented fitness function to the metaheuristic algorithms. Therefore, the optimization accuracy and stability of the proposed algorithm for dynamic PV cell parameter identification can be significantly improved simultaneously.
引用
收藏
页数:23
相关论文
共 42 条
[1]   Identification of unknown parameters of solar cell models: A comprehensive overview of available approaches [J].
Abbassi, Rabeh ;
Abbassi, Abdelkader ;
Jemli, Mohamed ;
Chebbi, Souad .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2018, 90 :453-474
[2]   Parameter extraction of solar photovoltaic models using queuing search optimization and differential evolution [J].
Abd El-Mageed, Amr A. ;
Abohany, Amr A. ;
Saad, Hatem M. H. ;
Sallam, Karam M. .
APPLIED SOFT COMPUTING, 2023, 134
[3]   Research on real-time identification method of model parameters for the photovoltaic array [J].
Chen, Xiang ;
Ding, Kun ;
Yang, Hang ;
Chen, Xihui ;
Zhang, Jingwei ;
Jiang, Meng ;
Gao, Ruiguang ;
Liu, Zengquan .
APPLIED ENERGY, 2023, 342
[4]  
Dabah M. A. E., 2023, ENERGY, V262, article 125522
[5]   Parameters identification of PV solar cells and modules using flexible particle swarm optimization algorithm [J].
Ebrahimi, S. Mohammadreza ;
Salahshour, Esmaeil ;
Malekzadeh, Milad ;
Gordillo, Francisco .
ENERGY, 2019, 179 :358-372
[6]   Parameters estimation of single- and multiple-diode photovoltaic model using whale optimisation algorithm [J].
Elazab, Omnia S. ;
Hasanien, Hany M. ;
Elgendy, Mohamed A. ;
Abdeen, Amr M. .
IET RENEWABLE POWER GENERATION, 2018, 12 (15) :1755-1761
[7]   Review on applications of particle swarm optimization in solar energy systems [J].
Elsheikh, A. H. ;
Abd Elaziz, M. .
INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2019, 16 (02) :1159-1170
[8]   Parameters estimation of the single and double diode photovoltaic models using a Gauss-Seidel algorithm and analytical method: A comparative study [J].
Et-torabi, K. ;
Nassar-eddine, I. ;
Obbadi, A. ;
Errami, Y. ;
Rmaily, R. ;
Sahnoun, S. ;
El Fajri, A. ;
Agunaou, M. .
ENERGY CONVERSION AND MANAGEMENT, 2017, 148 :1041-1054
[9]   Short-term Load Forecasting of Regional Distribution Network Based on Generalized Regression Neural Network Optimized by Grey Wolf Optimization Algorithm [J].
Ge, Leijiao ;
Xian, Yiming ;
Wang, Zhongguan ;
Gao, Bo ;
Chi, Fujian ;
Sun, Kuo .
CSEE JOURNAL OF POWER AND ENERGY SYSTEMS, 2021, 7 (05) :1093-1101
[10]   A Hybrid Model for Short-term PV Output Forecasting Based on PCA-GWO-GRNN [J].
Ge, Leijiao ;
Xian, Yiming ;
Yan, Jun ;
Wang, Bo ;
Wang, Zhongguan .
JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, 2020, 8 (06) :1268-1275