Nanomaterials for Quantum Information Science and Engineering

被引:63
作者
Alfieri, Adam [1 ]
Anantharaman, Surendra B. [1 ]
Zhang, Huiqin [1 ]
Jariwala, Deep [1 ]
机构
[1] Univ Penn, Elect & Syst Engn, Philadelphia, PA 19104 USA
基金
瑞士国家科学基金会;
关键词
low-dimensional materials; nanomaterials; quantum emitters; quantum information; qubits; SINGLE-PHOTON EMISSION; HEXAGONAL BORON-NITRIDE; CHEMICAL-VAPOR-DEPOSITION; 2-DIMENSIONAL TOPOLOGICAL INSULATORS; ON-DEMAND GENERATION; CARBON NANOTUBES; COHERENT MANIPULATION; TELECOM WAVELENGTHS; HALIDE PEROVSKITES; ELECTRICAL CONTROL;
D O I
10.1002/adma.202109621
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Quantum information science and engineering (QISE)-which entails the use of quantum mechanical states for information processing, communications, and sensing-and the area of nanoscience and nanotechnology have dominated condensed matter physics and materials science research in the 21st century. Solid-state devices for QISE have, to this point, predominantly been designed with bulk materials as their constituents. This review considers how nanomaterials (i.e., materials with intrinsic quantum confinement) may offer inherent advantages over conventional materials for QISE. The materials challenges for specific types of qubits, along with how emerging nanomaterials may overcome these challenges, are identified. Challenges for and progress toward nanomaterials-based quantum devices are condidered. The overall aim of the review is to help close the gap between the nanotechnology and quantum information communities and inspire research that will lead to next-generation quantum devices for scalable and practical quantum applications.
引用
收藏
页数:43
相关论文
共 596 条
[1]   Atomic-scale imaging of a 27-nuclear-spin cluster using a quantum sensor [J].
Abobeih, M. H. ;
Randall, J. ;
Bradley, C. E. ;
Bartling, H. P. ;
Bakker, M. A. ;
Degen, M. J. ;
Markham, M. ;
Twitchen, D. J. ;
Taminiau, T. H. .
NATURE, 2019, 576 (7787) :411-+
[2]   One-second coherence for a single electron spin coupled to a multi-qubit nuclear-spin environment [J].
Abobeih, M. H. ;
Cramer, J. ;
Bakker, M. A. ;
Kalb, N. ;
Markham, M. ;
Twitchen, D. J. ;
Taminiau, T. H. .
NATURE COMMUNICATIONS, 2018, 9
[3]   Quantum algorithm providing exponential speed increase for finding eigenvalues and eigenvectors [J].
Abrams, DS ;
Lloyd, S .
PHYSICAL REVIEW LETTERS, 1999, 83 (24) :5162-5165
[4]   Diamond-based single-photon emitters [J].
Aharonovich, I. ;
Castelletto, S. ;
Simpson, D. A. ;
Su, C-H ;
Greentree, A. D. ;
Prawer, S. .
REPORTS ON PROGRESS IN PHYSICS, 2011, 74 (07)
[5]  
Aharonovich I, 2016, NAT PHOTONICS, V10, P631, DOI [10.1038/NPHOTON.2016.186, 10.1038/nphoton.2016.186]
[6]   Van der Waals ferromagnetic Josephson junctions [J].
Ai, Linfeng ;
Zhang, Enze ;
Yang, Jinshan ;
Xie, Xiaoyi ;
Yang, Yunkun ;
Jia, Zehao ;
Zhang, Yuda ;
Liu, Shanshan ;
Li, Zihan ;
Leng, Pengliang ;
Cao, Xiangyu ;
Sun, Xingdan ;
Zhang, Tongyao ;
Kou, Xufeng ;
Han, Zheng ;
Xiu, Faxian ;
Dong, Shaoming .
NATURE COMMUNICATIONS, 2021, 12 (01)
[7]   Spin-valley qubits in gated quantum dots in a single layer of transition metal dichalcogenides [J].
Altintas, Abdulmenaf ;
Bieniek, Maciej ;
Dusko, Amintor ;
Korkusinski, Marek ;
Pawlowski, Jaroslaw ;
Hawrylak, Pawel .
PHYSICAL REVIEW B, 2021, 104 (19)
[8]   Quantum spin Hall effect induced by electric field in silicene [J].
An, Xing-Tao ;
Zhang, Yan-Yang ;
Liu, Jian-Jun ;
Li, Shu-Shen .
APPLIED PHYSICS LETTERS, 2013, 102 (04)
[9]  
[Anonymous], 2014, THEOR COMPUT CHEM, V560, P7
[10]   Quantum memory for squeezed light [J].
Appel, Juergen ;
Figueroa, Eden ;
Korystov, Dmitry ;
Lobino, M. ;
Lvovsky, A. I. .
PHYSICAL REVIEW LETTERS, 2008, 100 (09)