Higher resonance schemes and Koszul modules of simplicial complexes

被引:1
作者
Aprodu, Marian [1 ,2 ]
Farkas, Gavril [3 ]
Raicu, Claudiu [1 ,4 ]
Sammartano, Alessio [5 ]
Suciu, Alexander I. [6 ]
机构
[1] Simion Stoilow Inst Math, POB 1-764, Bucharest 014700, Romania
[2] Univ Bucharest, Fac Math & Comp Sci, Bucharest, Romania
[3] Humboldt Univ, Inst Math, Unter Linden 6, D-10099 Berlin, Germany
[4] Univ Notre Dame, Dept Math, 255 Hurley, Notre Dame, IN 46556 USA
[5] Politecn Milan, Dipartimento Matemat, Via Bonardi 9, I-20133 Milan, Italy
[6] Northeastern Univ, Dept Math, Boston, MA 02115 USA
关键词
Simplicial complex; Square-free monomial ideal; Koszul module; Resonance variety; Reduced scheme; Hilbert series; DUALITY;
D O I
10.1007/s10801-024-01313-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Each connected graded, graded-commutative algebra A of finite type over a field k \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Bbbk $$\end{document} of characteristic zero defines a complex of finitely generated, graded modules over a symmetric algebra, whose homology graded modules are called the (higher) Koszul modules of A. In this note, we investigate the geometry of the support loci of these modules, called the resonance schemes of the algebra. When A = k ⟨ Delta ⟩ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A=\Bbbk \langle \Delta \rangle $$\end{document} is the exterior Stanley-Reisner algebra associated to a finite simplicial complex Delta \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta $$\end{document} , we show that the resonance schemes are reduced. We also compute the Hilbert series of the Koszul modules and give bounds on the regularity and projective dimension of these graded modules. This leads to a relationship between resonance and Hilbert series that generalizes a known formula for the Chen ranks of a right-angled Artin group.
引用
收藏
页码:787 / 805
页数:19
相关论文
共 14 条
[1]  
Aprodu M., 2023, PREPRINT
[2]   TOPOLOGICAL INVARIANTS OF GROUPS AND KOSZUL MODULES [J].
Aprodu, Marian ;
Farkas, Gavril ;
Papadima, Stefan ;
Raicu, Claudiu ;
Weyman, Jerzy .
DUKE MATHEMATICAL JOURNAL, 2022, 171 (10) :2013-2046
[3]   Koszul modules and Green's conjecture [J].
Aprodu, Marian ;
Farkas, Gavril ;
Papadima, Stefan ;
Raicu, Claudiu ;
Weyman, Jerzy .
INVENTIONES MATHEMATICAE, 2019, 218 (03) :657-720
[4]   Resolutions of monomial ideals and cohomology over exterior algebras [J].
Aramova, A ;
Avramov, LL ;
Herzog, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (02) :579-594
[5]   Linear strands of multigraded free resolutions [J].
Brown, Michael K. ;
Erman, Daniel .
MATHEMATISCHE ANNALEN, 2024, 390 (02) :2707-2725
[6]   Abelian duality and propagation of resonance [J].
Denham, Graham ;
Suciu, Alexander I. ;
Yuzvinsky, Sergey .
SELECTA MATHEMATICA-NEW SERIES, 2017, 23 (04) :2331-2367
[7]  
Eisenbud David., 2005, GRAD TEXT M, V229
[8]  
Herzog J, 2011, GRAD TEXTS MATH, V260, P3, DOI 10.1007/978-0-85729-106-6
[9]   Algebraic invariants for right-angled Artin groups [J].
Papadima, S ;
Suciu, AI .
MATHEMATISCHE ANNALEN, 2006, 334 (03) :533-555
[10]   Vanishing resonance and representations of Lie algebras [J].
Papadima, Stefan ;
Suciu, Alexander I. .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2015, 706 :83-101