Particulate Pb emission factors from wildland fires in the United States

被引:2
作者
Holder, Amara L. [1 ]
Rao, Venkatesh [2 ]
Kovalcik, Kasey [1 ]
Virtaranta, Larry [1 ]
机构
[1] US Environm Protect Agcy, Off Res & Dev, 109 TW Alexander Dr, Durham, NC 27709 USA
[2] US Environm Protect Agcy, Off Air Qual Planning & Stand, 109 TW Alexander Dr, Durham, NC 27709 USA
来源
ATMOSPHERIC ENVIRONMENT-X | 2023年 / 20卷
关键词
Toxic metals; Fine particulate matter; Wildland fire smoke; Emissions; FIELD; LEAD;
D O I
10.1016/j.aeaoa.2023.100229
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Wildland fires, which includes both wild and prescribed fires, and agricultural fires in sum are one of the largest sources of fine particulate matter (PM2.5) emissions to the atmosphere in the United States (US). Although wildland fire PM2.5 emissions are primarily composed of carbonaceous material, many other elements including trace metals are emitted at very low levels. Lead (Pb) is a US Environmental Protection Agency (EPA) criteria pollutant that is ubiquitous in the environment at very low concentrations including in biomass that can burn and emit Pb into the atmosphere. Although fires may emit Pb at very low concentrations, they can be a source of sizeable Pb emissions to the atmosphere because of the large quantity of PM2.5 emitted from fires. In this work, we measure Pb concentrations in unburned biomass, ash/residues, and particulate matter <2.5 mu m (PM2.5) emitted from wildland fires using in-field measurements near prescribed fires and in laboratory simulations. Emission factors were calculated for multiple biomass types, representative of different regions of the US including grasslands in Oregon and Kansas; forest litter from Oregon, Montana, Minnesota, and North Carolina; and peat cores from Minnesota. Most of the biomass Pb remains in the ash/residues. The small percentage (<10%) that is emitted in PM2.5 is dependent on the biomass Pb concentration. The emissions factors measured here are several orders of magnitude lower than some reported in the literature, but the studies exhibited a wide range of values, which may be due to large uncertainties in the measurement method rather than differences in Pb emissions. Wildland fires are expected to increase in size and frequency in future years and these new emission factors can be used to improve the accuracy of Pb emissions estimates and better constrain our understanding of Pb emissions to the atmosphere.
引用
收藏
页数:8
相关论文
共 39 条
[1]   Fine Ash-Bearing Particles as a Major Aerosol Component in Biomass Burning Smoke [J].
Adachi, Kouji ;
Dibb, Jack E. ;
Scheuer, Eric ;
Katich, Joseph M. ;
Schwarz, Joshua P. ;
Perring, Anne E. ;
Mediavilla, Braden ;
Guo, Hongyu ;
Campuzano-Jost, Pedro ;
Jimenez, Jose L. ;
Crawford, James ;
Soja, Amber J. ;
Oshima, Naga ;
Kajino, Mizuo ;
Kinase, Takeshi ;
Kleinman, Lawrence ;
Sedlacek, Arthur J., III ;
Yokelson, Robert J. ;
Buseck, Peter R. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2022, 127 (02)
[2]  
Agency for Toxic Substances and Disease Registry, 2022, ASTDR's Substance Priority List
[3]   Seasonal emission factors from rangeland prescribed burns in the Kansas Flint Hills grasslands [J].
Aurell, Johanna ;
Gullett, Brian ;
Grier, Gina ;
Holder, Amara ;
George, Ingrid .
ATMOSPHERIC ENVIRONMENT, 2023, 304
[4]   Emission Factors from Aerial and Ground Measurements of Field and Laboratory Forest Burns in the Southeastern US: PM2.5, Black and Brown Carbon, VOC, and PCDD/PCDF [J].
Aurell, Johanna ;
Gullett, Brian K. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2013, 47 (15) :8443-8452
[5]   Particulate and gas sampling of prescribed fires in South Georgia, USA [J].
Balachandran, Sivaraman ;
Pachon, Jorge E. ;
Lee, Sangil ;
Oakes, Michelle M. ;
Rastogi, Neeraj ;
Shi, Wenyan ;
Tagaris, Efthimios ;
Yan, Bo ;
Davis, Aika ;
Zhang, Xiaolu ;
Weber, Rodney J. ;
Mulholland, James A. ;
Bergin, Michael H. ;
Zheng, Mei ;
Russell, Armistead G. .
ATMOSPHERIC ENVIRONMENT, 2013, 81 :125-135
[6]  
Beinze C, 2020, Sharing the Road: Managers and Scientists Transforming Fire Management
[7]   Beyond Particulate Matter Mass: Heightened Levels of Lead and Other Pollutants Associated with Destructive Fire Events in California [J].
Boaggio, Katie ;
LeDuc, Stephen D. ;
Rice, R. Byron ;
Duffney, Parker F. ;
Foley, Kristen M. ;
Holder, Amara L. ;
McDow, Stephen ;
Weaver, Christopher P. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2022, 56 (20) :14272-14283
[8]   Wildland fire smoke and human health [J].
Cascio, Wayne E. .
SCIENCE OF THE TOTAL ENVIRONMENT, 2018, 624 :586-595
[9]   Emissions from laboratory combustion of wildland fuels:: Emission factors and source profiles [J].
Chen, L.-W. Antony ;
Moosmuller, Hans ;
Arnott, W. Patrick ;
Chow, Judith C. ;
Watson, John G. ;
Susott, Ronald A. ;
Babbitt, Ronald E. ;
Wold, Cyle E. ;
Lincoln, Emily N. ;
Hao, Wei Min .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2007, 41 (12) :4317-4325
[10]  
Dignam T, 2019, J PUBLIC HEALTH MAN, V25, pS13, DOI [10.1097/PHH.0000000000000889, 10.1097/phh.0000000000000889]