Transgenerational epigenetic inheritance and immunity in chickens that vary in Marek's disease resistance

被引:3
作者
He, Yanghua [1 ,2 ]
Taylor, Robert L., Jr. [3 ]
Bai, Hao [4 ]
Ashwell, Christopher M. [3 ]
Zhao, Keji [5 ]
Li, Yaokun [6 ]
Sun, Guirong [7 ]
Zhang, Huanmin [8 ]
Song, Jiuzhou [2 ]
机构
[1] Univ Hawaii Manoa, Dept Human Nutr Food & Anim Sci, Honolulu, HI 96822 USA
[2] Univ Maryland, Dept Anim & Avian Sci, College Pk, MD 20742 USA
[3] West Virginia Univ, Div Anim & Nutr Sci, Morgantown, WV 26508 USA
[4] Yangzhou Univ, Inst Agr Sci & Technol Dev, Dept Joint Int Res Lab Agr & Agriprod Safety, Yangzhou 225009, Peoples R China
[5] NHLBI, Lab Epigenome Biol, Syst Biol Ctr, NIH, Bethesda, MD USA
[6] South China Agr Univ, Coll Anim Sci, Guangzhou 510642, GD, Peoples R China
[7] Henan Agr Univ, Coll Anim Sci & Vet Med, Zhengzhou, Peoples R China
[8] ARS, USDA, Avian Dis & Oncol Lab, E Lansing, MI 48823 USA
基金
美国食品与农业研究所;
关键词
epigenetics; transgenerational epigenetic inheritance; immunity; Marek 's disease; disease resistance; VIRUS-INDUCED TUMORS; AFFECTING SUSCEPTIBILITY; DNA METHYLATION; ASSOCIATION; EXPRESSION; GENES;
D O I
10.1016/j.psj.2023.103036
中图分类号
S8 [畜牧、 动物医学、狩猎、蚕、蜂];
学科分类号
0905 ;
摘要
Marek's disease virus (MDV), a natu-rally oncogenic, highly contagious alpha herpesvirus, induces a T cell lymphoma in chickens that causes severe economic loss. Marek's disease (MD) outcome in an individual is attributed to genetic and environmental factors. Further investigation of the host-virus interac-tion mechanisms that impact MD resistance is needed to achieve greater MD control. This study analyzed genome-wide DNA methylation patterns in 2 highly inbred parental lines 63 and 72 and 5 recombinant con-genic strains (RCS) C, L, M, N, and X strains from those parents. Lines 63 and 72, are MD resistant and sus-ceptible, respectively, whereas the RCS have different combinations of 87.5% Line 63 and 12.5% Line 72. Our DNA methylation cluster showed a strong association with MD incidence. Differentially methylated regions (DMRs) between the parental lines and the 5 RCS were captured. MD-resistant and MD-susceptible markers of DNA methylation were identified as transge-nerational epigenetic inheritable. In addition, the growth of v-src DNA tumors and antibody response against sheep red blood cells differed among the 2 paren-tal lines and the RCS. Overall, our results provide very solid evidence that DNA methylation patterns are trans-generational epigenetic inheritance (TEI) in chickens and also play a vital role in MD tumorigenesis and other immune responses; the specific methylated regions may be important modulators of general immunity.
引用
收藏
页数:9
相关论文
共 44 条
[1]  
Bacon LD, 2001, CURR TOP MICROBIOL, V255, P121
[2]   A review of the development of chicken lines to resolve genes determining resistance to diseases [J].
Bacon, LD ;
Hunt, HD ;
Cheng, HH .
POULTRY SCIENCE, 2000, 79 (08) :1082-1093
[3]   Herpesvirus of turkey reconstituted from bacterial artificial chromosome clones induces protection against Marek's disease [J].
Baigent, SJ ;
Petherbridge, LJ ;
Smith, LP ;
Zhao, YG ;
Chesters, PM ;
Nair, VK .
JOURNAL OF GENERAL VIROLOGY, 2006, 87 :769-776
[4]   Maternal Priming of Offspring Immune System in Drosophila [J].
Bozler, Julianna ;
Kacsoh, Balint Z. ;
Bosco, Giovanni .
G3-GENES GENOMES GENETICS, 2020, 10 (01) :165-175
[5]   MAREKS-DISEASE - EFFECTS OF B-HISTOCOMPATIBILITY ALLOALLELES IN RESISTANT AND SUSCEPTIBLE CHICKEN LINES [J].
BRILES, WE ;
STONE, HA ;
COLE, RK .
SCIENCE, 1977, 195 (4274) :193-195
[6]   Methylome Analysis in Chickens Immunized with Infectious Laryngotracheitis Vaccine [J].
Carrillo, Jose A. ;
He, Yanghua ;
Luo, Juan ;
Menendez, Kimberly R. ;
Tablante, Nathaniel L. ;
Zhao, Keji ;
Paulson, Joseph N. ;
Li, Bichun ;
Song, Jiuzhou .
PLOS ONE, 2015, 10 (06)
[7]   Genetics and vaccine efficacy: Host genetic variation affecting Marek's disease vaccine efficacy in White Leghorn chickens [J].
Chang, S. ;
Dunn, J. R. ;
Heidari, M. ;
Lee, L. F. ;
Song, J. ;
Ernst, C. W. ;
Ding, Z. ;
Bacon, L. D. ;
Zhang, H. .
POULTRY SCIENCE, 2010, 89 (10) :2083-2091
[8]   DNA Methylation and Demethylation in Plant Immunity [J].
Deleris, A. ;
Halter, T. ;
Navarro, L. .
ANNUAL REVIEW OF PHYTOPATHOLOGY, VOL 54, 2016, 54 :579-603
[9]   Trained immunity, tolerance, priming and differentiation: distinct immunological processes [J].
Divangahi, Maziar ;
Aaby, Peter ;
Khader, Shabaana Abdul ;
Barreiro, Luis B. ;
Bekkering, Siroon ;
Chavakis, Triantafyllos ;
van Crevel, Reinout ;
Curtis, Nigel ;
DiNardo, Andrew R. ;
Dominguez-Andres, Jorge ;
Duivenwoorden, Raphael ;
Fanucchi, Stephanie ;
Fayad, Zahi ;
Fuchs, Elaine ;
Hamon, Melanie ;
Jeffrey, Kate L. ;
Khan, Nargis ;
Joosten, Leo A. B. ;
Kaufmann, Eva ;
Latz, Eicke ;
Matarese, Giuseppe ;
van der Meer, Jos W. M. ;
Mhlanga, Musa ;
Moorlag, Simone J. C. F. M. ;
Mulder, Willem J. M. ;
Naik, Shruti ;
Novakovic, Boris ;
O'Neill, Luke ;
Ochando, Jordi ;
Ozato, Keiko ;
Riksen, Niels P. ;
Sauerwein, Robert ;
Sherwood, Edward R. ;
Schlitzer, Andreas ;
Schultze, Joachim L. ;
Sieweke, Michael H. ;
Benn, Christine Stabell ;
Stunnenberg, Henk ;
Sun, Joseph ;
van de Veerdonk, Frank L. ;
Weis, Sebastian ;
Williams, David L. ;
Xavier, Ramnik ;
Netea, Mihai G. .
NATURE IMMUNOLOGY, 2021, 22 (01) :2-6
[10]   Epigenetic Control of Defense Signaling and Priming in Plants [J].
Espinas, Nino A. ;
Saze, Hidetoshi ;
Saijo, Yusuke .
FRONTIERS IN PLANT SCIENCE, 2016, 7