Sulfur-Rich Additive-Induced Interphases Enable Highly Stable 4.6 V LiNi0.5Co0.2Mn0.3O2||graphite Pouch Cells

被引:28
作者
Fan, Ziqiang [1 ,2 ,3 ]
Zhou, Xunzhu [1 ,4 ]
Qiu, Jingwei [2 ,3 ]
Yang, Zhuo [1 ,4 ]
Lei, Chenxi [2 ,3 ]
Hao, Zhiqiang [1 ,4 ]
Li, Jianhui [2 ,3 ,5 ]
Li, Lin [1 ,4 ]
Zeng, Ronghua [2 ,3 ]
Chou, Shu-Lei [1 ,4 ]
机构
[1] Wenzhou Univ, Dept Inst Carbon Neutralizat, Coll Chem & Mat Engn, Wenzhou 325035, Zhejiang, Peoples R China
[2] South China Normal Univ, Engn Res Ctr MTEES, Minist Educ,Sch Chem, Dept Natl & Local Joint Engn, Guangzhou 510006, Guangdong, Peoples R China
[3] South China Normal Univ, Sch Chem, Key Lab ETESPG GHEI, Guangzhou 510006, Guangdong, Peoples R China
[4] Wenzhou Univ Technol Innovat, Inst Carbon Neutralizat, Wenzhou Key Lab Sodium Ion Batteries, Wenzhou 325035, Zhejiang, Peoples R China
[5] South China Normal Univ, Sch Mat & New Energy, Shanwei 516600, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Electrode-Electrolyte Interface; High Energy Density; High-Voltage; Lithium-Ion Batteries; Sulfur-Rich Additive; HIGH-VOLTAGE PERFORMANCE; METHYLENE METHANEDISULFONATE; LICOO2/GRAPHITE BATTERIES; ELECTROLYTE ADDITIVES; FUNCTIONAL ADDITIVES; PROPYLENE CARBONATE; LITHIUM; OXIDE; SULTONE; IMPACT;
D O I
10.1002/anie.202308888
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
High-voltage lithium-ion batteries (LIBs) have attracted great attention due to their promising high energy density. However, severe capacity degradation is witnessed, which originated from the incompatible and unstable electrolyte-electrode interphase at high voltage. Herein, a robust additive-induced sulfur-rich interphase is constructed by introducing an additive with ultrahigh S-content (34.04 %, methylene methyl disulfonate, MMDS) in 4.6 V LiNi0.5Co0.2Mn0.3O2 (NCM523)||graphite pouch cell. The MMDS does not directly participate the inner Li+ sheath, but the strong interactions between MMDS and PF6- anions promote the preferential decomposition of MMDS and broaden the oxidation stability, facilitating the formation of an ultrathin but robust sulfur-rich interfacial layer. The electrolyte consumption, gas production, phase transformation and dissolution of transition metal ions were effectively inhibited. As expected, the 4.6 V NCM523||graphite pouch cell delivers a high capacity retention of 87.99 % even after 800 cycles. This work shares new insight into the sulfur-rich additive-induced electrolyte-electrode interphase for stable high-voltage LIBs.
引用
收藏
页数:9
相关论文
共 61 条
  • [11] Effect of Electrolyte Additives on the LiNi0.5Mn0.3Co0.2O2 Surface Film Formation with Lithium and Graphite Negative Electrodes
    Hekmatfar, Maral
    Hasa, Ivana
    Eghbal, Ramtin
    Carvalho, Diogo V.
    Moretti, Arianna
    Passerini, Stefano
    [J]. ADVANCED MATERIALS INTERFACES, 2020, 7 (01)
  • [12] 243Am certified reference material for mass spectrometry
    Jakopic, Rozle
    Fankhauser, Adelheid
    Aregbe, Yetunde
    Richter, Stephan
    Crozet, Marielle
    Maillard, Christophe
    Rivier, Cedric
    Roudil, Daniele
    Marouli, Maria
    Tzika, Faidra
    Altzitzoglou, Timotheos
    Pomme, Stefaan
    [J]. JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY, 2021, 327 (01) : 495 - 504
  • [13] Impact of Sulfur-Containing Additives on Lithium-Ion Battery Performance: From Computational Predictions to Full-Cell Assessments
    Jankowski, Piotr
    Lindahl, Niklas
    Weidow, Jonathan
    Wieczorek, Wladyslaw
    Johansson, Patrik
    [J]. ACS APPLIED ENERGY MATERIALS, 2018, 1 (06): : 2582 - 2591
  • [14] Understanding the Role of Commercial Separators and Their Reactivity toward LiPF6 on the Failure Mechanism of High-Voltage NCM523 || Graphite Lithium Ion Cells
    Klein, Sven
    Wrogemann, Jens Matthies
    van Wickeren, Stefan
    Harte, Patrick
    Baermann, Peer
    Heidrich, Bastian
    Hesper, Jakob
    Borzutzki, Kristina
    Nowak, Sascha
    Boerner, Markus
    Winter, Martin
    Kasnatscheew, Johannes
    Placke, Tobias
    [J]. ADVANCED ENERGY MATERIALS, 2022, 12 (02)
  • [15] Understanding the Outstanding High-Voltage Performance of NCM523||Graphite Lithium Ion Cells after Elimination of Ethylene Carbonate Solvent from Conventional Electrolyte
    Klein, Sven
    van Wickeren, Stefan
    Roeser, Stephan
    Baermann, Peer
    Borzutzki, Kristina
    Heidrich, Bastian
    Boerner, Markus
    Winter, Martin
    Placke, Tobias
    Kasnatscheew, Johannes
    [J]. ADVANCED ENERGY MATERIALS, 2021, 11 (14)
  • [16] On the Beneficial Impact of Li2CO3 as Electrolyte Additive in NCM523 ∥ Graphite Lithium Ion Cells Under High-Voltage Conditions
    Klein, Sven
    Harte, Patrick
    Henschel, Jonas
    Baermann, Peer
    Borzutzki, Kristina
    Beuse, Thomas
    van Wickeren, Stefan
    Heidrich, Bastian
    Kasnatscheew, Johannes
    Nowak, Sascha
    Winter, Martin
    Placke, Tobias
    [J]. ADVANCED ENERGY MATERIALS, 2021, 11 (10)
  • [17] Higher, Stronger, Better ... A Review of 5 Volt Cathode Materials for Advanced Lithium-Ion Batteries
    Kraytsberg, Alexander
    Ein-Eli, Yair
    [J]. ADVANCED ENERGY MATERIALS, 2012, 2 (08) : 922 - 939
  • [18] 4-Hydroxy-2-Butanesulfonic Acid Gamma-sultone as a Bifunctional Electrolyte Additive for LiCoO2/Graphite Batteries With Enhanced Performances
    Lei, Wenping
    Deng, Xiao
    Zuo, Xiaoxi
    Zhang, Lengdan
    Xie, Dongming
    Liu, Shuang
    Liu, Jiansheng
    Nan, Junmin
    [J]. ACS APPLIED ENERGY MATERIALS, 2021, 4 (06) : 5877 - 5887
  • [19] Recent progress on electrolyte functional additives for protection of nickel-rich layered oxide cathode materials
    Li, Longshan
    Wang, Dingming
    Xu, Gaojie
    Zhou, Qian
    Ma, Jun
    Zhang, Jianjun
    Du, Aobing
    Cui, Zili
    Zhou, Xinhong
    Cui, Guanglei
    [J]. JOURNAL OF ENERGY CHEMISTRY, 2022, 65 : 280 - 292
  • [20] 3,3-Diethylene Di-Sulfite (DES) as a High-Voltage Electrolyte Additive for 4.5 V LiNi0.8Co0.1Mn0.1O2/Graphite Batteries with Enhanced Performances
    Li, Shuai
    Li, Canhuang
    Yang, Tianxiang
    Wang, Wenlian
    Lu, Jing
    Fan, Weizhen
    Zhao, Xiaoyang
    Zuo, Xiaoxi
    Tie, Shaolong
    Nan, Junmin
    [J]. CHEMELECTROCHEM, 2021, 8 (04) : 745 - 754