Multilabeled and topological versions of the Hex theorem

被引:0
作者
Tkacz, Przemyslaw [1 ]
Piekarska, Maria [1 ]
机构
[1] Cardinal Stefan Wyszynski Univ, Coll Sci, Fac Math & Nat Sci, Woycickiego 1-3, PL-01938 Warsaw, Poland
关键词
Dimension; Hex game; Hex theorem; Labeling; Poincare-Miranda theorem; Simplicial algorithms;
D O I
10.1016/j.topol.2023.108525
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of our paper is to give a purely combinatorial and algorithmic proof of the Hex theorem with multiple labels. Moreover we extend this result for a new class of complexes, called n-essential. We also present a topological version of the Hex theorem and explain its relation to the fixed point property, the Poincare-Miranda theorem and the covering (Lebesgue) dimension. (C) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:11
相关论文
共 12 条
[1]  
Bapat R.B., 2009, MODELING COMPUTATION
[2]   Colorful versions of the Lebesgue, KKM, and Hex theorem [J].
Baralic, Dorde ;
Zivaljevic, Rade .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2017, 146 :295-311
[3]  
Brouwer LEJ, 1912, MATH ANN, V71, P97
[4]   GAME OF HEX AND THE BROUWER FIXED-POINT THEOREM [J].
GALE, D .
AMERICAN MATHEMATICAL MONTHLY, 1979, 86 (10) :818-827
[5]  
Kulpa W., 1994, Filomat, V8, P81
[6]  
Miranda C., 1940, Boll. Un. Mat. Ital, V3, P5
[7]  
Poincare H., 1884, Bull. Astronomique, V1, P63
[8]  
Poincare H., 1884, Bull. Astronomique, V1, P251
[9]  
Steinhaus H., 2016, MATH SNAPSHOTS, V18
[10]   An n-dimensional version of Steinhaus' chessboard theorem [J].
Tkacz, Przemyslaw ;
Turzanski, Marian .
TOPOLOGY AND ITS APPLICATIONS, 2008, 155 (04) :354-361