Stretchable conductive-ink-based wrinkled triboelectric nanogenerators for mechanical energy harvesting and self-powered signal sensing

被引:12
|
作者
Wu, W. [1 ,2 ]
Peng, X. [2 ,3 ]
Xiao, Y. [1 ,2 ]
Sun, J. [1 ]
Li, L. [1 ,2 ]
Xu, Y. [1 ,2 ]
Zhang, S. [1 ,2 ]
Dong, K. [2 ,3 ,4 ]
Wang, L. [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Semicond, State Key Lab Superlatt & Microstruct, Beijing 100083, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100029, Peoples R China
[3] Univ Chinese Acad Sci, Coll Mat Sci & Optoelect Technol, Beijing 100049, Peoples R China
[4] Univ Chinese Acad Sci, Coll Nanosci & Technol, Beijing 100049, Peoples R China
基金
美国国家科学基金会;
关键词
Flexible electronics; 3D structure; Wearable; High performance; Health monitoring; PAPER;
D O I
10.1016/j.mtchem.2022.101286
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The rapid development of flexible electronics and the corresponding fabrication technologies have increased the use of portable and wearable self-powered devices. In this work, a shape-adaptive flexible triboelectric nanogenerator (TENG) based on a conductive ink material is demonstrated. The conductive ink-based bottom electrode with wrinkled structure ensures that the TENG exhibits outstanding stretchability and output performance such that it can adapt to complex and varying environmental factors. An output voltage of 128 V and power density of 0.286 mW/cm2 were generated under contact mode with applied vertical compressive stress of 20 N. Furthermore, because of the intrinsic mechanical ductility of the wrinkled structure, the proposed TENG can maintain excellent output performance when deformed under a certain range of strains, and active motion monitoring and energy harvesting functions can also be stably achieved on the irregular surface. The device was combined with a wireless trans-mission system to form a wearable mechanical signal detection patch for real-time monitoring of human joint activity, which provides a new treatment option in the field of sports rehabilitation. These ad-vantages demonstrate that the proposed cost-effective and portable TENG is a promising candidate for the development of a self-powered strain sensing device in future practical applications. (c) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Ultra-stretchable and healable hydrogel-based triboelectric nanogenerators for energy harvesting and self-powered sensing
    Li, Guoxia
    Li, Longwei
    Zhang, Panpan
    Chang, Caiyun
    Xu, Fan
    Pu, Xiong
    RSC ADVANCES, 2021, 11 (28) : 17437 - 17444
  • [2] A Stretchable Multimode Triboelectric Nanogenerator for Energy Harvesting and Self-Powered Sensing
    Hu, Shiyu
    Chang, Shoude
    Xiao, Gaozhi
    Lu, Jianping
    Gao, Jun
    Zhang, Yanguang
    Tao, Ye
    ADVANCED MATERIALS TECHNOLOGIES, 2022, 7 (03)
  • [3] Fully stretchable triboelectric nanogenerator for energy harvesting and self-powered sensing
    Li, Xunjia
    Jiang, Chengmei
    Zhao, Fengnian
    Lan, Lingyi
    Yao, Yao
    Yu, Yonghua
    Ping, Jianfeng
    Ying, Yibin
    NANO ENERGY, 2019, 61 : 78 - 85
  • [4] Silk protein-based triboelectric nanogenerators for energy harvesting and self-powered sensing
    Shang, Bo
    Wang, Chen-Yu
    Wang, Xiao-Xue
    Yu, Shou-Shan
    Wu, Zhi-Feng
    Qiao, Sheng-Lin
    Chen, Ke-Zheng
    SENSORS AND ACTUATORS A-PHYSICAL, 2025, 387
  • [5] Phosphor-Based Triboelectric Nanogenerators for Mechanical Energy Harvesting and Self-Powered Systems
    Rakshita, Muddamalla
    Madathil, Navaneeth
    Sharma, Aachal A.
    Pradhan, Payal P.
    Kasireddi, A. K. Durga Prasad
    Khanapuram, Uday Kumar
    Rajaboina, Rakesh Kumar
    Divi, Haranath
    ACS APPLIED ELECTRONIC MATERIALS, 2024, 6 (03) : 1821 - 1828
  • [6] Self-healable, stretchable triboelectric nanogenerators based on flexible polyimide for energy harvesting and self-powered sensors
    Li, Changyang
    Wang, Peng
    Zhang, Dun
    NANO ENERGY, 2023, 109
  • [7] Sustainable triboelectric nanogenerators based on recycled materials for biomechanical energy harvesting and self-powered sensing
    Wang, Yitong
    Li, Zihua
    Fu, Hong
    Xu, Bingang
    NANO ENERGY, 2023, 115
  • [8] Transparent and Efficient Wood-Based Triboelectric Nanogenerators for Energy Harvesting and Self-Powered Sensing
    Cheng, Ting
    Cao, Kunli
    Jing, Yidan
    Wang, Hongyan
    Wu, Yan
    POLYMERS, 2024, 16 (09)
  • [9] Waterproof and stretchable triboelectric nanogenerator for biomechanical energy harvesting and self-powered sensing
    Chen, Xuexian
    Miao, Liming
    Guo, Hang
    Chen, Haotian
    Song, Yu
    Su, Zongming
    Zhang, Haixia
    APPLIED PHYSICS LETTERS, 2018, 112 (20)
  • [10] Stretchable Woven Fabric-Based Triboelectric Nanogenerator for Energy Harvesting and Self-Powered Sensing
    Chen, Lijun
    Wang, Tairan
    Shen, Yunchu
    Wang, Fumei
    Chen, Chaoyu
    NANOMATERIALS, 2023, 13 (05)