Non-Gaussian variational wave functions for interacting bosons on a lattice

被引:1
作者
Qian, T. [1 ]
Fernandez-Melgarejo, J. J. [2 ]
Zueco, D. [3 ]
Molina-Vilaplana, J. [4 ]
机构
[1] Ocean Univ China, Coll Phys & Optoelect Engn, Qingdao 266100, Peoples R China
[2] Univ Murcia, Dept Electromagnetismo & Elect, Murcia 30100, Spain
[3] Univ Zaragoza, Inst Nanociencia & Mat Aragon INMA, CSIC, Zaragoza 50009, Spain
[4] Univ Politecn Cartagena, Dept Automat, Cartagena 30202, Spain
关键词
SYSTEMS;
D O I
10.1103/PhysRevB.107.035121
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A variational method for studying the ground state of strongly interacting quantum many-body bosonic systems is presented. Our approach constructs a class of extensive variational non-Gaussian wave functions which extend Gaussian states by means of nonlinear canonical transformations (NLCTs) on the fields of the theory under consideration. We illustrate this method with the one-dimensional Bose-Hubbard model for which the proposal presented here provides a family of approximate ground states at arbitrarily large values of the interaction strength. We find that, for different values of the interaction, the non-Gaussian NLCT-trial states sensibly improve the ground-state energy estimation when the system is in the Mott phase.
引用
收藏
页数:9
相关论文
共 35 条
[1]   LOGARITHMIC APPROXIMATIONS TO POLYNOMIAL LAGRANGEANS [J].
BENDER, CM ;
MILTON, KA ;
MOSHE, M ;
PINSKY, SS ;
SIMMONS, LM .
PHYSICAL REVIEW LETTERS, 1987, 58 (25) :2615-2618
[2]   Many-body physics with ultracold gases [J].
Bloch, Immanuel ;
Dalibard, Jean ;
Zwerger, Wilhelm .
REVIEWS OF MODERN PHYSICS, 2008, 80 (03) :885-964
[3]   Scrambling and thermalization in a diffusive quantum many-body system [J].
Bohrdt, A. ;
Mendl, C. B. ;
Endres, M. ;
Knap, M. .
NEW JOURNAL OF PHYSICS, 2017, 19
[4]   One dimensional bosons: From condensed matter systems to ultracold gases [J].
Cazalilla, M. A. ;
Citro, R. ;
Giamarchi, T. ;
Orignac, E. ;
Rigol, M. .
REVIEWS OF MODERN PHYSICS, 2011, 83 (04) :1405-1466
[5]   Towards spacetime entanglement entropy for interacting theories [J].
Chen, Yangang ;
Hackl, Lucas ;
Kunjwal, Ravi ;
Moradi, Heidar ;
Yazdi, Yasaman K. ;
Zilhao, Miguel .
JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (11)
[6]   Properties of the one-dimensional Bose-Hubbard model from a high-order perturbative expansion [J].
Damski, Bogdan ;
Zakrzewski, Jakub .
NEW JOURNAL OF PHYSICS, 2015, 17
[7]   Characterization of Mott-insulating and superfluid phases in the one-dimensional Bose-Hubbard model [J].
Ejima, Satoshi ;
Fehske, Holger ;
Gebhard, Florian ;
Muenster, Kevin Zu ;
Knap, Michael ;
Arrigoni, Enrico ;
von der Linden, Wolfgang .
PHYSICAL REVIEW A, 2012, 85 (05)
[8]   Non-Gaussian entanglement renormalization for quantum fields [J].
Fernandez-Melgarejo, J. J. ;
Molina-Vilaplana, J. .
JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (07)
[9]   Entanglement renormalization for interacting field theories [J].
Fernandez-Melgarejo, J. J. ;
Molina-Vilaplana, J. ;
Torrente-Lujan, E. .
PHYSICAL REVIEW D, 2019, 100 (06)
[10]   The large N limit of icMERA and holography [J].
Fernandez-Melgarejo, Jose J. ;
Molina-Vilaplana, Javier .
JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (04)