The non-holonomic Herglotz variational problem

被引:1
|
作者
Massa, Enrico [1 ]
Pagani, Enrico [2 ]
机构
[1] Univ Genoa, DIME, Sez Metodi & Modelli Matemat, Via All Opera Pia 15, I-16145 Genoa, Italy
[2] Univ Trento, Dipartimento Matemat, Via Sommarive 14, I-38123 Povo, Italy
关键词
PRINCIPLE;
D O I
10.1063/5.0181319
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The geometric approach to the study of the Herglotz problem developed in Massa and Pagani [J. Math. Phys. 64, 102902 (2023)] is extended to the case in which the evolution of the system is subject to a set of non-holonomic constraints. The original setup is suitably adapted to the case in study. Various aspects of the problem are considered: the direct derivation of the evolution equations; the super-lagrangian approach; the resulting super-Hamiltonian and its relation with Pontryagin's maximum principle; the abnormality index of the extremals; the invariance properties of the theory and the consequent existence of Herglotz Lagrangians gauge equivalent to ordinary ones.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Variational problem of general displacements in non-holonomic systems
    Liang, Li-Fu
    Shi, Zhi-Fei
    Acta Mechanica Solida Sinica, 1993, 6 (04):
  • [2] Variational non-holonomic systems in physics
    Czudková, L
    Musilová, J
    GLOBAL ANALYSIS AND APPLIED MATHEMATICS, 2004, 729 : 131 - 140
  • [3] On the variational formulation of systems with non-holonomic constraints
    Delphenich, D. H.
    ANNALEN DER PHYSIK, 2009, 18 (09) : 649 - 670
  • [4] Non-holonomic control II : Non-holonomic quantum devices
    Brion, E
    Akulim, VM
    Comparat, D
    Dumer, I
    Gershkovich, V
    Harel, G
    Kurizki, G
    Mazets, I
    Pillet, P
    Quantum Informatics 2004, 2004, 5833 : 70 - 79
  • [5] On the Herglotz variational problem
    Massa, Enrico
    Pagani, Enrico
    JOURNAL OF MATHEMATICAL PHYSICS, 2023, 64 (10)
  • [6] ON THE PROBLEM OF STEADY MOTIONS STABILITY OF NON-HOLONOMIC SYSTEMS
    KARAPETIAN, AV
    PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 1980, 44 (03): : 295 - 300
  • [7] The non-Holonomic mechanics
    Kupka, I
    Oliva, WM
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 169 (01) : 169 - 189
  • [8] The streetboard rider: an appealing problem in non-holonomic mechanics
    Janova, J.
    Musilova, J.
    EUROPEAN JOURNAL OF PHYSICS, 2010, 31 (02) : 333 - 345
  • [9] The non-holonomic double pendulum: An example of non-linear non-holonomic system
    Sergio Benenti
    Regular and Chaotic Dynamics, 2011, 16 : 417 - 442
  • [10] The Non-holonomic Double Pendulum: an Example of Non-linear Non-holonomic System
    Benenti, Sergio
    REGULAR & CHAOTIC DYNAMICS, 2011, 16 (05): : 417 - 442